scholarly journals A Novel Indoor Ranging Algorithm Based on a Received Signal Strength Indicator and Channel State Information Using an Extended Kalman Filter

2020 ◽  
Vol 10 (11) ◽  
pp. 3687 ◽  
Author(s):  
Jingjing Wang ◽  
Joon Goo Park

With the increasing demand of location-based services, the indoor ranging method based on Wi-Fi has become an important technique due to its high accuracy and low hardware requirements. The complicated indoor environment makes it difficult for wireless indoor ranging systems to obtain accurate distance measurements. This paper presents an Extended Kalman filter-based approach for indoor ranging by utilizing transmission channel quality metrics, including Received Signal Strength Indicator (RSSI) and Channel State Information (CSI). The proposed ranging algorithm scheme is implemented and validated with experiments in two typical indoor environments. A real indoor experiment demonstrates that the ranging estimation accuracy of our algorithms can be significantly enhanced compared with the typical algorithms. The ranging estimation accuracy is defined as the cumulative distribution function of the distance error.

2020 ◽  
Vol 12 (12) ◽  
pp. 1995
Author(s):  
David Sánchez-Rodríguez ◽  
Miguel A. Quintana-Suárez ◽  
Itziar Alonso-González ◽  
Carlos Ley-Bosch ◽  
Javier J. Sánchez-Medina

In recent years, indoor localization systems based on fingerprinting have had significant advances yielding high accuracies. Those approaches often use information about channel communication, such as channel state information (CSI) and received signal strength (RSS). Nevertheless, these features have always been employed separately. Although CSI provides more fine-grained physical layer information than RSS, in this manuscript, a methodology for indoor localization fusing both features from a single access point is proposed to provide a better accuracy. In addition, CSI amplitude information is processed to remove high variability information that can negatively influence location estimation. The methodology was implemented and validated in two scenarios using a single access point located in two different positions and configured in 2.4 and 5 GHz frequency bands. The experiments show that the methodology yields an average error distance of about 0.1 m using the 5 GHz band and a single access point.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4057 ◽  
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Jeongsik Choi ◽  
Yong-Hwa Kim

Identifying channel states as line-of-sight or non-line-of-sight helps to optimize location-based services in wireless communications. The received signal strength identification and channel state information are used to estimate channel conditions for orthogonal frequency division multiplexing systems in indoor wireless local area networks. This paper proposes a joint convolutional neural network and recurrent neural network architecture to classify channel conditions. Convolutional neural networks extract the feature from frequency-domain characteristics of channel state information data and recurrent neural networks extract the feature from time-varying characteristics of received signal strength identification and channel state information between packet transmissions. The performance of the proposed methods is verified under indoor propagation environments. Experimental results show that the proposed method has a 2% improvement in classification performance over the conventional recurrent neural network model.


Author(s):  
Kehinde O. Odeyemi ◽  
Pius A. Owolawi

Energy scarcity has been known to be one of the most noticeable challenges in wireless communication system. In this paper, the performance of an energy harvesting based partial relay selection (PRS) cooperative system with transmit antenna selection (TAS) and outdated channel state information (CSI) is investigated. The system dual-hops links are assumed to follow Rayleigh distribution and the relay selection is based on outdated CSI of the first link. To realize the benefit of multiple antenna, the amplified-and-forward (AF) relay nodes then employs the TAS technique for signal transmission and signal reception is achieved at the destination through maximum ratio combining (MRC) scheme. Thus, the closed-form expression for the system equivalent end-to-end cumulative distribution function (CDF) is derived. Based on this, the analytical closed-form expressions for the outage probability, average bit error rate, and throughput for the delay-limited transmission mode are then obtained. The results illustrated that the energy harvesting time, relay distance, channel correlation coefficient, the number of relay transmit antennas and destination received antenna have significant effect on the system performance. Monte-carol simulation is employed to validate the accuracy of the derived expressions.


2021 ◽  
Author(s):  
Runming Yang ◽  
Xiaolong Yang ◽  
Jiacheng Wang ◽  
Mu Zhou ◽  
Zengshan Tian ◽  
...  

<div>Indoor localization using WiFi signal parameters is challenging, with encouraging decimeter localization results available with enough line-of-sight coverage and hardware infrastructure. This paper proposes a new 2-dimensional multiple packets based matrix pencil (2D M-MP) method to estimate the Angle of Arrival (AoA) and Time of Flight (ToF) based on WiFi channel state information (CSI). Compared with the conventional parameter estimation algorithms, this method has two advantages. First, 2D M-MP method uses the discrete Fourier transform (DFT) to convert the complex computation into real computation to reduce the computational complexity significantly without losing accuracy. Second, it accumulates multiple CSI packets to improve the parameter estimation accuracy effectively, especially at low values of signal-to-noiseratio (SNR) environment. To verify the practicability of our proposed 2D M-MP method, we set up a localization system in an actual scenario using commodity WiFi cards which demonstrates that the performance of 2D M-MP method is better than conventional parameter estimation algorithms and can achieve a localization accuracy of 42 cm in indoor hall deployment.</div>


Sign in / Sign up

Export Citation Format

Share Document