scholarly journals Spectrogram Classification Using Dissimilarity Space

2020 ◽  
Vol 10 (12) ◽  
pp. 4176 ◽  
Author(s):  
Loris Nanni ◽  
Andrea Rigo ◽  
Alessandra Lumini ◽  
Sheryl Brahnam

In this work, we combine a Siamese neural network and different clustering techniques to generate a dissimilarity space that is then used to train an SVM for automated animal audio classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely available. We exploit different clustering methods to reduce the spectrograms in the dataset to a number of centroids that are used to generate the dissimilarity space through the Siamese network. Once computed, we use the dissimilarity space to generate a vector space representation of each pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space performs well on both classification problems without ad-hoc optimization of the clustering methods. Moreover, results show that the fusion of CNN-based approaches applied to the animal audio classification problem works better than the stand-alone CNNs.

2020 ◽  
Vol 10 (23) ◽  
pp. 8578
Author(s):  
Loris Nanni ◽  
Sheryl Brahnam ◽  
Alessandra Lumini ◽  
Gianluca Maguolo

The classifier system proposed in this work combines the dissimilarity spaces produced by a set of Siamese neural networks (SNNs) designed using four different backbones with different clustering techniques for training SVMs for automated animal audio classification. The system is evaluated on two animal audio datasets: one for cat and another for bird vocalizations. The proposed approach uses clustering methods to determine a set of centroids (in both a supervised and unsupervised fashion) from the spectrograms in the dataset. Such centroids are exploited to generate the dissimilarity space through the Siamese networks. In addition to feeding the SNNs with spectrograms, experiments process the spectrograms using the heterogeneous auto-similarities of characteristics. Once the similarity spaces are computed, each pattern is “projected” into the space to obtain a vector space representation; this descriptor is then coupled to a support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the proposed approach performs competitively (without ad-hoc optimization of the clustering methods) on both animal vocalization datasets. To further demonstrate the power of the proposed system, the best standalone approach is also evaluated on the challenging Dataset for Environmental Sound Classification (ESC50) dataset.


Author(s):  
Loris Nanni ◽  
Sheryl Brahnam ◽  
Alessandra Lumini ◽  
Gianluca Maguolo

The classifier system proposed in this work combines the dissimilarity spaces produced by a set of Siamese neural networks (SNNs) designed using 4 different backbones, with different clustering techniques for training SVMs for automated animal audio classification. The system is evaluated on two animal audio datasets: one for cat and another for bird vocalizations. Different clustering methods reduce the spectrograms in the dataset to a set of centroids that generate (in both a supervised and unsupervised fashion) the dissimilarity space through the Siamese networks. In addition to feeding the SNNs with spectrograms, additional experiments process the spectrograms using the Heterogeneous Auto-Similarities of Characteristics. Once the similarity spaces are computed, a vector space representation of each pattern is generated that is then trained on a Support Vector Machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the proposed approach performs competitively (without ad-hoc optimization of the clustering methods) on both animal vocalization datasets. To further demonstrate the power of the proposed system, the best stand-alone approach is also evaluated on the challenging Dataset for Environmental Sound Classification (ESC50) dataset. The MATLAB code used in this study is available at https://github.com/LorisNanni.


Author(s):  
Nguyen The Cuong

In binary classification problems, two classes normally have different tendencies. More complex, the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) don't sufficiently exploit structural information with cluster granularity of the data, cause of restricts the capability of simulation of data trends. Structural twin support vector machine (S-TWSVM) sufficiently exploits structural information with cluster granularity of one class for learning a represented hyperplane of that class. This makes S-TWSVM's data simulation capabilities better than TWSVM. However, for the data type that each class consists of clusters of different trends, the capability of simulation of S-TWSVM is restricted. In this paper, we propose a new Hierarchical Multi Twin Support Vector Machine (called HM-TWSVM) for classification problem with each cluster-vs-class strategy. HM-TWSVM overcomes the limitations of S-TWSVM. Experiment results show that HM-TWSVM could describe the tendency of each cluster.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Lev V. Utkin ◽  
Yulia A. Zhuk

A method for solving a classification problem when there is only partial information about some features is proposed. This partial information comprises the mean values of features for every class and the bounds of the features. In order to maximally exploit the available information, a set of probability distributions is constructed such that two distributions are selected from the set which define the minimax and minimin strategies. Random values of features are generated in accordance with the selected distributions by using the Monte Carlo technique. As a result, the classification problem is reduced to the standard model which is solved by means of the support vector machine. Numerical examples illustrate the proposed method.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2215
Author(s):  
Jung-Kai Tsai ◽  
Chih-Hsing Hung

Because COVID-19 occurred in 2019, the behavioxr of humans has been changed and it will influence the business model of enterprise. Enterprise cannot predict its development according to past knowledge and experiment; so, it needs a new machine learning framework to predict enterprise performance. The goal of this research is to modify AdaBoost to reasonably predict the enterprise performance. In order to justify the usefulness of the proposed model, enterprise data will be collected and the proposed model can be used to predict the enterprise performance after COVID-19. The test data correct rate of the proposed model will be compared with some of the traditional machine learning models. Compared with the traditional AdaBoost, back propagation neural network (BPNN), regression classifier, support vector machine (SVM) and support vector regression (SVR), the proposed method possesses the better classification ability (average correct rate of the proposed method is 88.04%) in handling two classification problems. Compared with traditional AdaBoost, one-against-all SVM, one-against-one SVM, one-against-all SVR and one-against-one SVR, the classification ability of the proposed method is also relatively better for coping with the multi-class classification problem. Finally, some conclusions and future research will be discussed at the end.


2021 ◽  
Vol 37 (1) ◽  
pp. 43-56
Author(s):  
Nguyen The Cuong ◽  
Huynh The Phung

In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation on the capability of simulation of data trends. Structural Twin Support Vector Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM has not been improved compared to TWSVM. This paper proposes a new Weighted Structural - Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters strategy. Experimental results show that WS-SVM could describe the tendency of the distribution of cluster information. Furthermore, both the theory and experiment show that the training time of the WS-SVM for classification problem has significantly improved compared to S-TWSVM.


Author(s):  
Thanh Vi Nguyen ◽  
Thế Cường Nguyễn

n binary classification problems, two classes of data seem tobe different from each other. It is expected to be more complicated dueto the number of data points of clusters in each class also be different.Traditional algorithms as Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support VectorMachine (LSTSVM) cannot sufficiently exploit information about thenumber of data points in each cluster of the data. Which may be effectto the accuracy of classification problems. In this paper, we proposes anew Improved Least Square - Support Vector Machine (called ILS-SVM)for binary classification problems with a class-vs-clusters strategy. Experimental results show that the ILS-SVM training time is faster thanthat of TSVM, and the ILS-SVM accuracy is better than LSTSVM andTSVM in most cases.


2016 ◽  
Vol 43 (1) ◽  
pp. 54-74 ◽  
Author(s):  
Baojun Ma ◽  
Hua Yuan ◽  
Ye Wu

Clustering is a powerful unsupervised tool for sentiment analysis from text. However, the clustering results may be affected by any step of the clustering process, such as data pre-processing strategy, term weighting method in Vector Space Model and clustering algorithm. This paper presents the results of an experimental study of some common clustering techniques with respect to the task of sentiment analysis. Different from previous studies, in particular, we investigate the combination effects of these factors with a series of comprehensive experimental studies. The experimental results indicate that, first, the K-means-type clustering algorithms show clear advantages on balanced review datasets, while performing rather poorly on unbalanced datasets by considering clustering accuracy. Second, the comparatively newly designed weighting models are better than the traditional weighting models for sentiment clustering on both balanced and unbalanced datasets. Furthermore, adjective and adverb words extraction strategy can offer obvious improvements on clustering performance, while strategies of adopting stemming and stopword removal will bring negative influences on sentiment clustering. The experimental results would be valuable for both the study and usage of clustering methods in online review sentiment analysis.


2019 ◽  
Vol 37 (6) ◽  
pp. 1040-1058 ◽  
Author(s):  
Shuo Xu ◽  
Xin An

Purpose Image classification is becoming a supporting technology in several image-processing tasks. Due to rich semantic information contained in the images, it is very popular for an image to have several labels or tags. This paper aims to develop a novel multi-label classification approach with superior performance. Design/methodology/approach Many multi-label classification problems share two main characteristics: label correlations and label imbalance. However, most of current methods are devoted to either model label relationship or to only deal with unbalanced problem with traditional single-label methods. In this paper, multi-label classification problem is regarded as an unbalanced multi-task learning problem. Multi-task least-squares support vector machine (MTLS-SVM) is generalized for this problem, renamed as multi-label LS-SVM (ML2S-SVM). Findings Experimental results on the emotions, scene, yeast and bibtex data sets indicate that the ML2S-SVM is competitive with respect to the state-of-the-art methods in terms of Hamming loss and instance-based F1 score. The values of resulting parameters largely influence the performance of ML2S-SVM, so it is necessary for users to identify proper parameters in advance. Originality/value On the basis of MTLS-SVM, a novel multi-label classification approach, ML2S-SVM, is put forward. This method can overcome the unbalanced problem but also explicitly models arbitrary order correlations among labels by allowing multiple labels to share a subspace. In addition, the multi-label classification approach has a wider range of applications. That is to say, it is not limited to the field of image classification.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Semih Dinç ◽  
Abdullah Bal

This paper presents a novel approach for the hyperspectral imagery (HSI) classification problem, using Kernel Fukunaga-Koontz Transform (K-FKT). The Kernel based Fukunaga-Koontz Transform offers higher performance for classification problems due to its ability to solve nonlinear data distributions. K-FKT is realized in two stages: training and testing. In the training stage, unlike classical FKT, samples are relocated to the higher dimensional kernel space to obtain a transformation from non-linear distributed data to linear form. This provides a more efficient solution to hyperspectral data classification. The second stage, testing, is accomplished by employing the Fukunaga- Koontz Transformation operator to find out the classes of the real world hyperspectral images. In experiment section, the improved performance of HSI classification technique, K-FKT, has been tested comparing other methods such as the classical FKT and three types of support vector machines (SVMs).


Sign in / Sign up

Export Citation Format

Share Document