scholarly journals Hyperspectral Image Classification Using Kernel Fukunaga-Koontz Transform

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Semih Dinç ◽  
Abdullah Bal

This paper presents a novel approach for the hyperspectral imagery (HSI) classification problem, using Kernel Fukunaga-Koontz Transform (K-FKT). The Kernel based Fukunaga-Koontz Transform offers higher performance for classification problems due to its ability to solve nonlinear data distributions. K-FKT is realized in two stages: training and testing. In the training stage, unlike classical FKT, samples are relocated to the higher dimensional kernel space to obtain a transformation from non-linear distributed data to linear form. This provides a more efficient solution to hyperspectral data classification. The second stage, testing, is accomplished by employing the Fukunaga- Koontz Transformation operator to find out the classes of the real world hyperspectral images. In experiment section, the improved performance of HSI classification technique, K-FKT, has been tested comparing other methods such as the classical FKT and three types of support vector machines (SVMs).

2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


2020 ◽  
Vol 10 (12) ◽  
pp. 4176 ◽  
Author(s):  
Loris Nanni ◽  
Andrea Rigo ◽  
Alessandra Lumini ◽  
Sheryl Brahnam

In this work, we combine a Siamese neural network and different clustering techniques to generate a dissimilarity space that is then used to train an SVM for automated animal audio classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely available. We exploit different clustering methods to reduce the spectrograms in the dataset to a number of centroids that are used to generate the dissimilarity space through the Siamese network. Once computed, we use the dissimilarity space to generate a vector space representation of each pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space performs well on both classification problems without ad-hoc optimization of the clustering methods. Moreover, results show that the fusion of CNN-based approaches applied to the animal audio classification problem works better than the stand-alone CNNs.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Lev V. Utkin ◽  
Yulia A. Zhuk

A method for solving a classification problem when there is only partial information about some features is proposed. This partial information comprises the mean values of features for every class and the bounds of the features. In order to maximally exploit the available information, a set of probability distributions is constructed such that two distributions are selected from the set which define the minimax and minimin strategies. Random values of features are generated in accordance with the selected distributions by using the Monte Carlo technique. As a result, the classification problem is reduced to the standard model which is solved by means of the support vector machine. Numerical examples illustrate the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Qi Yue ◽  
Caiwen Ma

Classification is a hot topic in hyperspectral remote sensing community. In the last decades, numerous efforts have been concentrated on the classification problem. Most of the existing studies and research efforts are following the conventional pattern recognition paradigm, which is based on complex handcrafted features. However, it is rarely known which features are important for the problem. In this paper, a new classification skeleton based on deep machine learning is proposed for hyperspectral data. The proposed classification framework, which is composed of exponential momentum deep convolution neural network and support vector machine (SVM), can hierarchically construct high-level spectral-spatial features in an automated way. Experimental results and quantitative validation on widely used datasets showcase the potential of the developed approach for accurate hyperspectral data classification.


Author(s):  
Jonnadula Dr.J.Harikiran Harikiran

In this paper, a novel approach for hyperspectral image classification technique is presented using principal component analysis (PCA), bidimensional empirical mode decomposition (BEMD) and support vector machines (SVM). In this process, using PCA feature extraction technique on Hyperspectral Dataset, the first principal component is extracted. This component is supplied as input to BEMD algorithm, which divides the component into four parts, the first three parts represents intrensic mode functions (IMF) and last part shows the residue. These BIMFs and residue image is further taken as input to the SVM for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analyticalperformance in comparison to some established methods.


Author(s):  
Nguyen The Cuong

In binary classification problems, two classes normally have different tendencies. More complex, the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) don't sufficiently exploit structural information with cluster granularity of the data, cause of restricts the capability of simulation of data trends. Structural twin support vector machine (S-TWSVM) sufficiently exploits structural information with cluster granularity of one class for learning a represented hyperplane of that class. This makes S-TWSVM's data simulation capabilities better than TWSVM. However, for the data type that each class consists of clusters of different trends, the capability of simulation of S-TWSVM is restricted. In this paper, we propose a new Hierarchical Multi Twin Support Vector Machine (called HM-TWSVM) for classification problem with each cluster-vs-class strategy. HM-TWSVM overcomes the limitations of S-TWSVM. Experiment results show that HM-TWSVM could describe the tendency of each cluster.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2215
Author(s):  
Jung-Kai Tsai ◽  
Chih-Hsing Hung

Because COVID-19 occurred in 2019, the behavioxr of humans has been changed and it will influence the business model of enterprise. Enterprise cannot predict its development according to past knowledge and experiment; so, it needs a new machine learning framework to predict enterprise performance. The goal of this research is to modify AdaBoost to reasonably predict the enterprise performance. In order to justify the usefulness of the proposed model, enterprise data will be collected and the proposed model can be used to predict the enterprise performance after COVID-19. The test data correct rate of the proposed model will be compared with some of the traditional machine learning models. Compared with the traditional AdaBoost, back propagation neural network (BPNN), regression classifier, support vector machine (SVM) and support vector regression (SVR), the proposed method possesses the better classification ability (average correct rate of the proposed method is 88.04%) in handling two classification problems. Compared with traditional AdaBoost, one-against-all SVM, one-against-one SVM, one-against-all SVR and one-against-one SVR, the classification ability of the proposed method is also relatively better for coping with the multi-class classification problem. Finally, some conclusions and future research will be discussed at the end.


2011 ◽  
Vol 5 (3) ◽  
pp. 618-628 ◽  
Author(s):  
Wei Di ◽  
Melba M. Crawford

A novel co-regularization framework for active learning is proposed for hyperspectral image classification. The first regularizer explores the intrinsic multi-view information embedded in the hyperspectral data. By adaptively and quantitatively measuring the disagreement level, it focuses only on samples with high uncertainty and builds a contention pool which is a small subset of the overall unlabeled data pool, thereby mitigating the computational cost. The second regularizer is based on the “consistency assumption” and designed on a spatial or the spectral based manifold space. It serves to further focus on the most informative samples within the contention pool by penalizing rapid changes in the classification function evaluated on proximally close samples in a local region. Such changes may be due to the lack of capability of the current learner to describe the unlabeled data. Incorporating manifold learning into the active learning process enforces the clustering assumption and avoids the degradation of the distance measure associated with the original high-dimensional spectral features. One spatial and two local spectral embedding methods are considered in this study, in conjunction with the support vector machine (SVM) classifier implemented with a radial basis function (RBF) kernel. Experiments show excellent performance on AVIRIS and Hyperion hyperspectral data as compared to random sampling and the state-of-the-art SVMSIMPLE.


2012 ◽  
Vol 1 (1) ◽  
pp. 63 ◽  
Author(s):  
Ankush Chakrabarty ◽  
Olivia Choudhury ◽  
Pallab Sarkar ◽  
Avishek Paul ◽  
Debarghya Sarkar

The present paper describes the development of a hyperspectral image classification scheme using support vector machines (SVM) with spectrally weighted kernels. The kernels are designed during the training phase of the SVM using optimal spectral weights estimated using the Bacterial Foraging Optimization (BFO) algorithm, a popular modern stochastic optimization algorithm. The optimized kernel functions are then in the SVM paradigm for bi-classification of pixels in hyperspectral images. The effectiveness of the proposed approach is demonstrated by implementing it on three widely used benchmark hyperspectral data sets, two of which were taken over agricultural sites at Indian Pines, Indiana, and Salinas Valley, California, by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) at NASA’s Jet Propulsion Laboratory. The third dataset was acquired using the Reflective Optical System Imaging Spectrometer (ROSIS) over an urban scene at Pavia University, Italy to demonstrate the efficacy of the proposed approach in an urban scenario as well as with agricultural data. Classification errors for One-Against-One (OAO) and classification accuracies for One-Against-All (OAA) schemes were computed and compared to other methods developed in recent times. Finally, the use of the BFO-based technique is recommended owing to its superior performance, in comparison to other contemporary stochastic bio-inspired algorithms.


2021 ◽  
Vol 37 (1) ◽  
pp. 43-56
Author(s):  
Nguyen The Cuong ◽  
Huynh The Phung

In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation on the capability of simulation of data trends. Structural Twin Support Vector Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM has not been improved compared to TWSVM. This paper proposes a new Weighted Structural - Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters strategy. Experimental results show that WS-SVM could describe the tendency of the distribution of cluster information. Furthermore, both the theory and experiment show that the training time of the WS-SVM for classification problem has significantly improved compared to S-TWSVM.


Sign in / Sign up

Export Citation Format

Share Document