scholarly journals Applications of the Open-Source Hardware Arduino Platform in the Mining Industry: A Review

2020 ◽  
Vol 10 (14) ◽  
pp. 5018
Author(s):  
Sung-Min Kim ◽  
Yosoon Choi ◽  
Jangwon Suh

In this study, applications of the Arduino platform in the mining industry were reviewed. Arduino, a representative and popular open-source hardware, can acquire information from various sensors, transmit data using communication technology, and control devices through actuators. The review was conducted by classifying previous studies into three types of Arduino applications: field monitoring systems, wearable systems, and autonomous systems. With regard to field monitoring systems, most studies in mines were classified as atmospheric or geotechnical monitoring. In wearable systems, the health status of the miner was an important consideration, in addition to the environmental conditions of the mine. Arduino can be a useful tool as an initial prototype for autonomous mine systems. Arduino has advantages in that it can be combined with various electronic products and is cost-effective. Therefore, although many studies have been conducted in the laboratory (as opposed to field tests), Arduino applications can be further expanded in the mining field in the future.

2021 ◽  
Vol 8 ◽  
Author(s):  
Shaolong Yang ◽  
Chuan Liu ◽  
Ya Liu ◽  
Jinxin An ◽  
Xianbo Xiang

Over the past two decades, scholars developed various unmanned sailboat platforms, but most of them have specialized designs and controllers. Whereas these robotic sailboats have good performance with open-source designs, it is actually hard for interested researchers or fans to follow and make their own sailboats with these open-source designs. Thus, in this paper, a generic and flexible unmanned sailboat platform with easy access to the hardware and software architectures is designed and tested. The commonly used 1-m class RC racing sailboat was employed to install Pixhawk V2.4.8, Arduino Mega 2,560, GPS module M8N, custom-designed wind direction sensor, and wireless 433 Mhz telegram. The widely used open-source hardware modules were selected to keep reliable and low-cost hardware setup to emphasize the generality and feasibility of the unmanned sailboat platform. In software architecture, the Pixhawk V2.4.8 provided reliable states’ feedback. The Arduino Mega 2,560 received estimated states from Pixhawk V2.4.8 and the wind vane sensor, and then controlled servo actuators of rudder and sail using simplified algorithms. Due to the complexity of introducing robot operating system and its packages, we designed a generic but real-time software architecture just using Arduino Mega 2,560. A suitable line-of-sight guidance strategy and PID-based controllers were used to let the autonomous sailboat sail at user-defined waypoints. Field tests validated the sailing performance in facing WRSC challenges. Results of fleet race, station keeping, and area scanning proved that our design and algorithms could control the 1-m class RC sailboat with acceptable accuracy. The proposed design and algorithms contributed to developing educational, low-cost, micro class autonomous sailboats with accessible, generic, and flexible hardware and software. Besides, our sailboat platform also facilitates readers to develop similar sailboats with more focus on their missions.


2019 ◽  
Author(s):  
Benjamin Ambrose ◽  
James Baxter ◽  
John Cully ◽  
Matthew Willmott ◽  
Elliot Steele ◽  
...  

AbstractSingle-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET’s broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Ambrose ◽  
James M. Baxter ◽  
John Cully ◽  
Matthew Willmott ◽  
Elliot M. Steele ◽  
...  

AbstractSingle-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET’s broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.


2017 ◽  
Vol 2 (1) ◽  
pp. 80-87
Author(s):  
Puyda V. ◽  
◽  
Stoian. A.

Detecting objects in a video stream is a typical problem in modern computer vision systems that are used in multiple areas. Object detection can be done on both static images and on frames of a video stream. Essentially, object detection means finding color and intensity non-uniformities which can be treated as physical objects. Beside that, the operations of finding coordinates, size and other characteristics of these non-uniformities that can be used to solve other computer vision related problems like object identification can be executed. In this paper, we study three algorithms which can be used to detect objects of different nature and are based on different approaches: detection of color non-uniformities, frame difference and feature detection. As the input data, we use a video stream which is obtained from a video camera or from an mp4 video file. Simulations and testing of the algoritms were done on a universal computer based on an open-source hardware, built on the Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC processor with frequency 1,5GHz. The software was created in Visual Studio 2019 using OpenCV 4 on Windows 10 and on a universal computer operated under Linux (Raspbian Buster OS) for an open-source hardware. In the paper, the methods under consideration are compared. The results of the paper can be used in research and development of modern computer vision systems used for different purposes. Keywords: object detection, feature points, keypoints, ORB detector, computer vision, motion detection, HSV model color


Sign in / Sign up

Export Citation Format

Share Document