scholarly journals Development Cycle Modeling: Process Risk

2020 ◽  
Vol 10 (15) ◽  
pp. 5082
Author(s):  
Samuel Denard ◽  
Atila Ertas ◽  
Susan Mengel ◽  
Stephen Ekwaro-Osire

The first part of this paper outlined the Statistical Agent-based Model of Development and Evaluation (SAbMDE) and demonstrated the model’s ability to estimate development cycle resource utilization. This second part of the paper explores the model’s ability to compute development cycle information content and process risk. Risk managers focus mostly on outcome risk, i.e., the likelihood that a running system will behave in an undesirable manner. SAbMDE assumes that a subset of outcome risks are not inherent and immutable but are, instead, the result of defects and vulnerabilities introduced during the system’s development process. The likelihood of defect and vulnerability introduction is a process risk. SAbMDE further assumes that measuring process risk is a prerequisite for minimizing defects and vulnerabilities and, therefore, outcome risk. The model implements the measurement with Shannon’s information–probability relationship similar to its use in Axiomatic Design Theory (ADT). This paper details the SAbMDE’s information and risk calculations and demonstrates those calculations with examples. The process risk calculation is consistent with and offers a mechanism for the ADT Information Axiom.

2013 ◽  
Vol 411-414 ◽  
pp. 2511-2515
Author(s):  
Hou Xing You

Axiomatic design theory is a popular methodology for product design scheme evaluation in recent years. However, as information axiom has some limitation for information content of non-functional attributes, the application of axiomatic design theory is bound. Therefore, a new method is proposed for product design scheme evaluation in this paper, which is the generalized information content calculation, and the proposed method avoids the shortcoming of traditional information content calculations. Finally, the proposed method is applied in a case study, and experimental result shows the feasibility of the proposed method.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881408 ◽  
Author(s):  
Zhong-hang Bai ◽  
Shan Zhang ◽  
Man Ding ◽  
Jian-guang Sun

Modular design can shorten the product development cycle and enhance the product research and development capability of enterprises. To better solve the problem of module interface coupling after module partition, the present modular product design method has been improved based on the theory of inventive problem solving and axiomatic design theory. This article summarizes the engineering parameters commonly used in modular design based on the requirement analysis and conflict problems of modular structure design. And in the process of dividing the functional modules by fuzzy clustering algorithm, we propose defining and classifying the principle (technical) correlation between parts by these parameters. Then the coupling relation of each module interface is analyzed by the design matrix of axiomatic design and the conflict solving tool of the theory of inventive problem solving is utilized for decoupling. Finally, the high chair is taken as the design object and the design process is used to verify the feasibility of this method.


Author(s):  
Mats Nordlund ◽  
Taesik Lee ◽  
Sang-Gook Kim

In 1977, Nam P Suh proposed a different approach to design research. Suh’s approach was different in that it introduced the notions of domains and layers in a 2-D design thinking and stipulated a set of axioms that describes what is a good design. Following Suh’s 2-D reasoning structure in a zigzagging manner and applying these axioms through the design process should enable the designer to arrive at a good design. In this paper, we present our own experiences in applying Suh’s theories to software design, product design, organizational design, process design, and more in both academic and industrial settings. We also share our experience from teaching the Axiomatic Design theory to students at universities and engineers in industry, and draw conclusions on how best to teach and use this approach, and what results one can expect. The merits of the design axioms are discussed based on the practical experiences that the authors have had in their application. The process developed around the axioms to derive maximum value (solution neutral environment, design domains, what-how relationship, zig-zag process, decomposition, and design matrices) is also discussed and some updates are proposed.


Author(s):  
Wouter H. Vermeer ◽  
Justin D. Smith ◽  
Uri Wilensky ◽  
C. Hendricks Brown

AbstractPreventing adverse health outcomes is complex due to the multi-level contexts and social systems in which these phenomena occur. To capture both the systemic effects, local determinants, and individual-level risks and protective factors simultaneously, the prevention field has called for adoption of system science methods in general and agent-based models (ABMs) specifically. While these models can provide unique and timely insight into the potential of prevention strategies, an ABM’s ability to do so depends strongly on its accuracy in capturing the phenomenon. Furthermore, for ABMs to be useful, they need to be accepted by and available to decision-makers and other stakeholders. These two attributes of accuracy and acceptability are key components of open science. To ensure the creation of high-fidelity models and reliability in their outcomes and consequent model-based decision-making, we present a set of recommendations for adopting and using this novel method. We recommend ways to include stakeholders throughout the modeling process, as well as ways to conduct model verification, validation, and replication. Examples from HIV and overdose prevention work illustrate how these recommendations can be applied.


2015 ◽  
Vol 32 (1) ◽  
pp. 3-17
Author(s):  
Naresh K. Sharma ◽  
Elizabeth A. Cudney

Purpose – Complexity is an important element in axiomatic design theory. The current method for calculating complexity for a system following normal distribution is unbounded and approximate. The purpose of this paper is to present a detailed bounded solution for complexity using design and system ranges on a single function requirement. Design/methodology/approach – This paper discusses the complexity measure for a system following a uniform distribution. The complexities of two types of systems, a system performing with a uniform distribution and a system performing on target according to a normal distribution are then considered and compared. The research proposes a complexity measure for a system performing within specification limits with a uniform distribution. In addition, a new concept of relative complexity is proposed. Findings – A bounded solution for complexity for a normal distribution based on the existing assumptions was given which includes bias in addition to variance. The bounded solution was then compared to the existing approximate solution from the variance as well as bias standpoint. It was found that bias has an inappropriately reverse relationship with the bounded solution of complexity. Therefore, complexity cannot be used to approximate the system improvement when the improvement is based on a reduction in bias. Originality/value – The current method for calculating complexity for a system following normal distribution is unbounded and approximate. This paper proposed a complexity measure for a system performing within specification limits with a uniform distribution.


Author(s):  
Johan Vallhagen

Abstract In earlier work, the axiomatic design theory has been analyzed for applications on product design and the production processes that pertain to it, where parts manufacture and assembly take place in flexible and automatic manufacturing systems. The conclusion is that the original model cannot handle the manufacturing aspects in a satisfactory manner. This report proposes an expansion of the axiomatic design model, with a life-cycle approach as take-off. The expansion of the model consists of the introduction of a so-called Manufacturing World with different spaces, where various types of processes and support functions can be developed in agreement with the axiomatic principles. The spaces and their relationships have been defined along with explanations of work procedures. An explanatory example is given.


Author(s):  
Peer-Olaf Siebers ◽  
Sebastian Achter ◽  
Cristiane Palaretti Bernardo ◽  
Melania Borit ◽  
Edmund Chattoe-Brown

2010 ◽  
Vol 139-141 ◽  
pp. 1206-1210 ◽  
Author(s):  
Chi Bing Hu ◽  
Fang Yong Tian ◽  
Yan Cang Jiang

Based on the design theory of non-circular gears, using Visual Basic 6.0 Programming language secondary developed SolidWorks software, a system of elliptical gears parametric design and motion simulation was developed. 3D parametric modeling and motion simulation of elliptical gears can be achieved by this system. The development process of system is introduced in detail, and an example which designed a transmission with two identical three rank elliptical gears was given to illustrate the system operation process in detail. Using elliptical gears pair ratio cyclical curves acquired, compared with theoretical transmission ratio can verify design whether meet the requirements. Complex design and calculation and difficult 3D modeling problems of elliptical gears are solved, and this system can also improve design precision, shorten the development cycle, and guarantee the quality of products.


Sign in / Sign up

Export Citation Format

Share Document