scholarly journals A Novel Deep Learning System with Data Augmentation for Machine Fault Diagnosis from Vibration Signals

2020 ◽  
Vol 10 (17) ◽  
pp. 5765
Author(s):  
Qiang Fu ◽  
Huawei Wang

In real engineering scenarios, it is difficult to collect adequate cases with faulty conditions to train an intelligent diagnosis system. To alleviate the problem of limited fault data, this paper proposes a fault diagnosis method combining a generative adversarial network (GAN) and stacked denoising auto-encoder (SDAE). The GAN approach augments the limited real measured data, especially in faulty conditions. The generated data are then transformed into the SDAE fault diagnosis model. The GAN-SDAE approach improves the accuracy of the fault diagnosis from the vibration signals, especially when the measured samples are few. The usefulness of this method is assessed through two condition-monitoring cases: one is a classic bearing example and the other is a more general gear failure. The results demonstrate that diagnosis accuracy for both cases is above 90% for various working conditions, and the GAN-SDAE system is stable.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5494
Author(s):  
Chen Zhao ◽  
Jianliang Sun ◽  
Shuilin Lin ◽  
Yan Peng

Rolling mill multi-row bearings are subjected to axial loads, which cause damage of rolling elements and cages, so the axial vibration signal contains rich fault character information. The vertical shock caused by the failure is weakened because multiple rows of bearings are subjected to radial forces together. Considering the special characters of rolling mill bearing vibration signals, a fault diagnosis method combining Adaptive Multivariate Variational Mode Decomposition (AMVMD) and Multi-channel One-dimensional Convolution Neural Network (MC1DCNN) is proposed to improve the diagnosis accuracy. Additionally, Deep Convolutional Generative Adversarial Network (DCGAN) is embedded in models to solve the problem of fault data scarcity. DCGAN is used to generate AMVMD reconstruction data to supplement the unbalanced dataset, and the MC1DCNN model is trained by the dataset to diagnose the real data. The proposed method is compared with a variety of diagnostic models, and the experimental results show that the method can effectively improve the diagnosis accuracy of rolling mill multi-row bearing under unbalanced dataset conditions. It is an important guide to the current problem of insufficient data and low diagnosis accuracy faced in the fault diagnosis of multi-row bearings such as rolling mills.


2021 ◽  
Vol 11 (20) ◽  
pp. 9401
Author(s):  
Long Cui ◽  
Xincheng Tian ◽  
Xiaorui Shi ◽  
Xiujing Wang ◽  
Yigang Cui

With the assumption of sufficient labeled data, deep learning based machinery fault diagnosis methods show effectiveness. However, in real-industrial scenarios, it is costly to label the data, and unlabeled data is underutilized. Therefore, this paper proposes a semi-supervised fault diagnosis method called Bidirectional Wasserstein Generative Adversarial Network with Gradient Penalty (BiWGAN-GP). First, by unsupervised pre-training, the proposed method takes full advantage of a large amount of unlabeled data and can extract features from vibration signals effectively. Then, using only a few labeled data to conduct supervised fine-tuning, the model can perform an accurate fault diagnosis. Additionally, Wasserstein distance is used to improve the stability of the model’s training procedure. Validation is performed on the bearing and gearbox fault datasets with limited labeled data. The results show that the proposed method can achieve 99.42% and 91.97% of diagnosis accuracy on the bearing and gear dataset, respectively, when the size of the training set is only 10% of the testing set.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gang Xiang ◽  
Kun Tian

In recent years, deep learning methods which promote the accuracy and efficiency of fault diagnosis task without any extra requirement of artificial feature extraction have elicited the attention of researchers in the field of manufacturing industry as well as aerospace. However, the problems that data in source and target domains usually have different probability distributions because of different working conditions and there are insufficient labeled or even unlabeled data in target domain significantly deteriorate the performance and generalization of deep fault diagnosis models. To address these problems, we propose a novel Wasserstein Generative Adversarial Network with Gradient Penalty- (WGAN-GP-) based deep adversarial transfer learning (WDATL) model in this study, which exploits a domain critic to learn domain invariant feature representations by minimizing the Wasserstein distance between the source and target feature distributions through adversarial training. Moreover, an improved one-dimensional convolutional neural network- (CNN-) based feature extractor which utilizes exponential linear units (ELU) as activation functions and wide kernels is designed to automatically extract the latent features of raw time-series input data. Then, the fault model classifier trained in one working condition (source domain) with sufficient labeled samples could be generalized to diagnose data in other working conditions (target domain) with insufficient labeled samples. Experiments on two open datasets demonstrate that our proposed WDATL model outperforms most of the state-of-the-art approaches on transfer diagnosis tasks under diverse working circumstances.


2013 ◽  
Vol 433-435 ◽  
pp. 483-488
Author(s):  
Ke Yong Shao ◽  
Li Juan Han ◽  
Xin Min Wang ◽  
Feng Wu Zhang ◽  
Kun Qian

In the motor fault diagnosis technology, vibration signals can fully reflect the motor operation conditions. In this paper, a linear motor fault diagnosis method based on wavelet packet and neural network was presented. The improved neural network system was designed with variable hidden layer neurons. The network chosen different numerical values depending on different situations to reach the requirements that improving diagnostic accuracy and shortening the diagnosis time. The linear motor’s normal and two common faults vibration signals were analyzed and the vibration signals energy characteristics were extracted through wavelet packet, then identified fault through neural network. The experimental results show that this method can effectively improve the motor fault diagnosis accuracy.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 944
Author(s):  
Cheng Peng ◽  
Lingling Li ◽  
Qing Chen ◽  
Zhaohui Tang ◽  
Weihua Gui ◽  
...  

Fault diagnosis under the condition of data sets or samples with only a few fault labels has become a hot spot in the field of machinery fault diagnosis. To solve this problem, a fault diagnosis method based on deep transfer learning is proposed. Firstly, the discriminator of the generative adversarial network (GAN) is improved by enhancing its sparsity, and then adopts the adversarial mechanism to continuously optimize the recognition ability of the discriminator; finally, the parameter transfer learning (PTL) method is applied to transfer the trained discriminator to target domain to solve the fault diagnosis problem with only a small number of label samples. Experimental results show that this method has good fault diagnosis performance.


Sign in / Sign up

Export Citation Format

Share Document