scholarly journals Fluid Simulation with an L0 Based Optical Flow Deformation

2020 ◽  
Vol 10 (18) ◽  
pp. 6351
Author(s):  
Kun Li ◽  
Na Qi ◽  
Qing Zhu

Fluid simulation can be automatically interpolated by using data-driven fluid simulations based on a space-time deformation. In this paper, we propose a novel data-driven fluid simulation scheme with the L0 based optical flow deformation method by matching two fluid surfaces rather than the L2 regularization. The L0 gradient smooth regularization can result in prominent structure of the fluid in a sparsity-control manner, thus the misalignment of the deformation can be suppressed. We adopt the objective function using an alternating minimization with a half-quadratic splitting for solving the L0 based optical flow deformation model. Experiment results demonstrate that our proposed method can generate more realistic fluid surface with the optimal space-time deformation under the L0 gradient smooth constraint than the L2 one, and outperform the state-of-the-art methods in terms of both objective and subjective quality.

PEDIATRICS ◽  
2016 ◽  
Vol 137 (Supplement 3) ◽  
pp. 256A-256A
Author(s):  
Catherine Ross ◽  
Iliana Harrysson ◽  
Lynda Knight ◽  
Veena Goel ◽  
Sarah Poole ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 639-647 ◽  
Author(s):  
Olugbenga Moses Anubi ◽  
Charalambos Konstantinou

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2021 ◽  
pp. 263208432110100
Author(s):  
Satyendra Nath Chakrabartty

Background Scales for evaluating insomnia differ in number of items, response format, and result in different scores distributions and score ranges and may not facilitate meaningful comparisons. Objectives Transform ordinal item-scores of three scales of insomnia to continuous, equidistant, monotonic, normally distributed scores, avoiding limitations of summative scoring of Likert scales. Methods Equidistant item-scores by weighted sum using data-driven weights to different levels of different items, considering cell frequencies of Item-Levels matrix, followed by normalization and conversion to [1, 10]. Equivalent test-scores (as sum of transformed item- scores) for a pair of scales were found by Normal Probability curves. Empirical illustration given. Results Transformed test-scores are continuous, monotonic and followed Normal distribution with no outliers and tied scores. Such test-scores facilitate ranking, better classification and meaningful comparison of scales of different lengths and formats and finding equivalent score combinations of two scales. For a given value of transformed test-score of a scale, easy alternate method avoiding integration proposed to find equivalent scores of another scales. Equivalent scores of scales help to relate various cut-off scores of different scales and uniformity in interpretations. Integration of various scales of insomnia is achieved by finding one-to-one correspondence among the equivalent score of various scales with correlation over 0.99 Conclusion Resultant test-scores facilitated undertaking analysis in parametric set up. Considering the theoretical advantages including meaningfulness of operations, better comparison, use of such method of transforming scores of Likert items/test is recommended test and items, Future studies were suggested.


Sign in / Sign up

Export Citation Format

Share Document