scholarly journals Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique

2020 ◽  
Vol 10 (18) ◽  
pp. 6542
Author(s):  
Ji-Won Jin ◽  
Byung-Wook Jeon ◽  
Chan-Woong Choi ◽  
Ki-Weon Kang

Probabilistic analyses of carbon fabric composites were conducted using the Monte Carlo simulation based on a homogenization technique to evaluate the mechanical properties of composites and their stochastic nature. First, the homogenization analysis was performed for a micro-level structure, which fiber and matrix are combined. The effective properties obtained from this analysis were compared with the results from the rule of mixture theory to verify the homogenization analysis. And, tensile tests were conducted to clearly evaluate the result and the reliability was verified by comparing the results of the tensile tests and homogenization analysis. In addition, the Monte Carlo simulation was performed based on homogenization analyses to consider the uncertainties of the micro-level structure combined of fiber and matrix. Next, the results of this simulation were applied to the macro-level structure combined of the tow and matrix to perform the Monte Carlo simulation based on the homogenization technique. Finally, the sensitivity analysis was conducted to identify the effect of constituents of the carbon plain weave composite and the linear correlation of the micro- and macro-level structures combined of the fiber/matrix and tow/matrix, respectively. The findings of this study verified that the effective properties of the plain weave carbon/epoxy composite and their uncertainties depended on the properties of the carbon fiber and epoxy, which are the basic constituents of plain weave carbon/epoxy composites.

2021 ◽  
Vol 50 ◽  
pp. 101301
Author(s):  
A.Z. Zheng ◽  
S.J. Bian ◽  
E. Chaudhry ◽  
J. Chang ◽  
H. Haron ◽  
...  

2007 ◽  
Vol 129 ◽  
pp. 83-87
Author(s):  
Hua Long Li ◽  
Jong Tae Park ◽  
Jerzy A. Szpunar

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2881
Author(s):  
Muath Alrammal ◽  
Munir Naveed ◽  
Georgios Tsaramirsis

The use of innovative and sophisticated malware definitions poses a serious threat to computer-based information systems. Such malware is adaptive to the existing security solutions and often works without detection. Once malware completes its malicious activity, it self-destructs and leaves no obvious signature for detection and forensic purposes. The detection of such sophisticated malware is very challenging and a non-trivial task because of the malware’s new patterns of exploiting vulnerabilities. Any security solutions require an equal level of sophistication to counter such attacks. In this paper, a novel reinforcement model based on Monte-Carlo simulation called eRBCM is explored to develop a security solution that can detect new and sophisticated network malware definitions. The new model is trained on several kinds of malware and can generalize the malware detection functionality. The model is evaluated using a benchmark set of malware. The results prove that eRBCM can identify a variety of malware with immense accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abroon Qazi ◽  
Mecit Can Emre Simsekler

PurposeThis paper aims to develop a process for prioritizing project risks that integrates the decision-maker's risk attitude, uncertainty about risks both in terms of the associated probability and impact ratings, and correlations across risk assessments.Design/methodology/approachThis paper adopts a Monte Carlo Simulation-based approach to capture the uncertainty associated with project risks. Risks are prioritized based on their relative expected utility values. The proposed process is operationalized through a real application in the construction industry.FindingsThe proposed process helped in identifying low-probability, high-impact risks that were overlooked in the conventional risk matrix-based prioritization scheme. While considering the expected risk exposure of individual risks, none of the risks were located in the high-risk exposure zone; however, the proposed Monte Carlo Simulation-based approach revealed risks with a high probability of occurrence in the high-risk exposure zone. Using the expected utility-based approach alone in prioritizing risks may lead to ignoring few critical risks, which can only be captured through a rigorous simulation-based approach.Originality/valueMonte Carlo Simulation has been used to aggregate the risk matrix-based data and disaggregate and map the resulting risk profiles with underlying distributions. The proposed process supported risk prioritization based on the decision-maker's risk attitude and identified low-probability, high-impact risks and high-probability, high-impact risks.


Sign in / Sign up

Export Citation Format

Share Document