scholarly journals Proof of Adjourn (PoAj): A Novel Approach to Mitigate Blockchain Attacks

2020 ◽  
Vol 10 (18) ◽  
pp. 6607
Author(s):  
Sarwar Sayeed ◽  
Hector Marco-Gisbert

The blockchain is a distributed ledger technology that is growing in importance since inception. Besides cryptocurrencies, it has also crossed its boundary inspiring various organizations, enterprises, or business establishments to adopt this technology benefiting from the most innovative security features. The decentralized and immutable aspects have been the key points that endorse blockchain as one of the most secure technologies at the present time. However, in recent times such features seemed to be faded due to new attacking techniques. One of the biggest challenges remains within the consensus protocol itself, which is an essential component to bring all network participants to an agreed state. Cryptocurrencies adopt suitable consensus protocols based on their mining requirement, and Proof of Work (PoW) is the consensus protocol that is being predominated in major cryptocurrencies. Recent consensus protocol-based attacks, such as the 51% attack, Selfish Mining, Miner Bribe Attack, Zero Confirmation Attack, and One Confirmation Attack have been demonstrated feasible. To overcome these attacks, we propose Proof of Adjourn (PoAj), a novel consensus protocol that provides strong protection regardless of attackers hashing capability. After analyzing the 5 major attacks, and current protection techniques indicating the causes of their failure, we compared the PoAj against the most widely used PoW, showing that PoAj is not only able to mitigate the 5 attacks but also attacks relying on having a large amount of hashing power. In addition, the proposed PoAj showed to be an effective approach to mitigate the processing time issue of large-sized transactions. PoAj is not tailored to any particular attack; therefore, it is effective against malicious powerful players. The proposed approach provides a strong barrier not only to current and known attacks but also to future unknown attacks based on different strategies that rely on controlling the majority of the hashing power.

Author(s):  
Ashmita Pandey

Abstract: A decentralised, Secure, Peer-to-Peer Multi-Voting System on Ethereum Blockchain is a distributed ledger technology (DLT) that permits virtual votes to be transacted in a peer-to-peer decentralized network. Those transactions are validated and registered through every node of the network, so creating a transparent and immutable series of registered events whose truthfulness is supplied through a consensus protocol. Smart contract automates the execution of agreement that runs routinely as soon as the conditions are satisfied. Smart contract would not need any third parties consequently prevents time loss. By Eliminating the requirement for third parties, consequently, allows numerous processes to be extra efficient and economical. The system is secure, reliable, and anonymous. Smart contract is enforced for the Ethereum network using the Ethereum wallets and also the Solidity language. Users are capable of submit their votes immediately from their Ethereum wallets, and those transaction requests is handled with the consensus of each single Ethereum node. This creates a transparent environment for evoting. A lot of concerning efficiency of the peer-to-peer decentralized electoral system on Ethereum network along with application and the outcomes of implementation are provided in this paper. Keywords: Blockchain, Distributed Ledger Technology (DLT), Consensus Protocol, Smart Contracts, Ethereum, Solidity


2021 ◽  
Vol 190 ◽  
pp. 571-581
Author(s):  
Seryozha E. Melkonyan ◽  
Natali A. Galoyan ◽  
Anna N. Norkina ◽  
Pavel Yu. Leonov

Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 89
Author(s):  
Annegret Henninger ◽  
Atefeh Mashatan

The global supply chain is a network of interconnected processes that create, use, and exchange records, but which were not designed to interact with one another. As such, the key to unlocking the full potential of supply chain management (SCM) technologies is achieving interoperability across participating records systems and networks. We review existing research and solutions using distributed ledger technology (DLT) and provide a survey of its current state of practice. We additionally propose a holistic solution: a DLT-based interoperable future state that could enable the interoperable, efficient, reliable, and secure exchange of records with integrity. Finally, we provide a gap analysis between our proposed future state and the current state, which also serves as a gap analysis for many fractional DLT-based SCM solutions and research.


Author(s):  
Terry W. Griffin ◽  
Keith D. Harris ◽  
Jason K. Ward ◽  
Paul Goeringer ◽  
Jessica A. Richard

Sign in / Sign up

Export Citation Format

Share Document