scholarly journals Evaluation of Workability and Mechanical Properties of Bottom Ash Aggregate Concrete

2020 ◽  
Vol 10 (22) ◽  
pp. 8016
Author(s):  
Yong-Hyok Kim ◽  
Hak-Young Kim ◽  
Keun-Hyeok Yang ◽  
Jung-Soo Ha

The purpose of this study is to evaluate the workability and mechanical properties of concrete containing bottom ash, which is an industrial byproduct, as an aggregate. Twelve concrete mixtures, including concrete containing bottom ash aggregate (CCBA), are classified into three groups of W/C 0.45, 0.375, and 0.3 according to the target strength. Each group includes four mixtures in which natural aggregate and bottom ash are applied as fine and coarse aggregates according to particular ratios. On the basis of the test results, a reliable model to predict the 28-day compressive strength of CCBA is proposed by applying regression analysis. The proposed model points out that when applying bottom ash as aggregate, the concrete density is lowered, and W/C should be reduced to offset the lowered compressive strength. As a result of comparing experimental values with the existing design code models, it is found that while the fib model accurately predicts compressive strength development and tensile resistance capacity in general, the ACI 318 code overestimates the elastic modulus at the oven-dried density (ρc) range of 1840 kg/m3 and above. Accurate prediction of the mechanical properties of CCBA requires the measurement of additional experimental data that consider W/C and ρc as important parameters.

2019 ◽  
Vol 8 (4) ◽  
pp. 3733-3736

Nowadays geopolymer concretes are subjected to heat curing. A large amount of highly corrosive and the hygroscopic alkaline activators are nowadays generally utilized in producing geopolymer concretes. In this paper, hybrid Ordinary Portland Cement (OPC) and geopolymer mixes are developed. The mainly used activator id the Solid potassium carbonate at different percentage is used as 5% & 10% of the weight of geopolymeric materials and OPC was blended with geopolymeric materials in different proportions. By adding cement, improves all the geopolymer properties except workability. By Applying external heat, it plays an important role in gaining strength. Strength gained by the absence of external heat is achieved by using Portland cement as a partial replacement of geocement. The influence of OPC content on the compressive strength development is investigated, and the optimized amount of solid activator to be used in the mix is also investigated. It is observed that percentage of strength increase decreases from52.24% to 14.77% as the OPC content increased from 20% to 60%.


2020 ◽  
Vol 10 (15) ◽  
pp. 5207
Author(s):  
Chamila Gunasekara ◽  
Charitha Seneviratne ◽  
David W. Law ◽  
Sujeeva Setunge

Quarry aggregate reserves are depleting rapidly within Australia and the rest of the world due to an increasing demand for aggregates driven by expansion in construction. The annual production of premix concrete in Australia is approximately 30 million cubic meters, while 3–5% of concrete delivered to site remains unused and is disposed of in landfill or crushing plants. The production of coarse aggregates using this waste concrete is potentially a sustainable approach to reduce environmental and economic impact. A testing program has been conducted to investigate mechanical performance and permeation characteristics of concrete produced using a novel manufactured coarse aggregate recycled directly from fresh premix concrete. The recycled coarse aggregate (RCA) concrete satisfied the specified 28-day design strength of 25 MPa and 40 MPa at 28 days and a mean compressive strength of 60 MPa at 90 days. Aggregate grading was observed to determine strength development, while low water absorption, low drying shrinkage, and higher packing density indicate that the RCA concrete is a high-quality material with a dense pore structure. The rough fracture surface of the aggregate increased the bond between C-S-H gel matrix and RCA at the interfacial transition zone. Furthermore, a good correlation was observed between compressive strength and all other mechanical properties displayed by the quarried aggregate concrete. The application of design equations as stated in Australian standards were observed to provide a conservative design for RCA concrete structures based on the mechanical properties.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


Sign in / Sign up

Export Citation Format

Share Document