scholarly journals Complementing Solutions to Optimization Problems via Crowdsourcing on Video Game Plays

2020 ◽  
Vol 10 (23) ◽  
pp. 8410
Author(s):  
Mariano Vargas-Santiago ◽  
Raúl Monroy ◽  
José Emmanuel Ramirez-Marquez ◽  
Chi Zhang ◽  
Diana A. Leon-Velasco ◽  
...  

Leveraging human insight and intuition has been identified as having the potential for the improvement of traditional algorithmic methods. For example, in a video game, a user may not only be entertained but may also be challenged to beat the score of another player; additionally, the user can learn complicated concepts, such as multi-objective optimization, with two or more conflicting objectives. Traditional methods, including Tabu search and genetic algorithms, require substantial computational time and resources to find solutions to multi-objective optimization problems (MOPs). In this paper, we report on the use of video games as a way to gather novel solutions to optimization problems. We hypothesize that humans may find solutions that complement those found mechanically either because the computer algorithm did not find a solution or because the solution provided by the crowdsourcing of video games approach is better. We model two different video games (one for the facility location problem and one for scheduling problems), we demonstrate that the solution space obtained by a computer algorithm can be extended or improved by crowdsourcing novel solutions found by humans playing a video game.

2021 ◽  
Vol 1 (4) ◽  
pp. 1-26
Author(s):  
Faramarz Khosravi ◽  
Alexander Rass ◽  
Jürgen Teich

Real-world problems typically require the simultaneous optimization of multiple, often conflicting objectives. Many of these multi-objective optimization problems are characterized by wide ranges of uncertainties in their decision variables or objective functions. To cope with such uncertainties, stochastic and robust optimization techniques are widely studied aiming to distinguish candidate solutions with uncertain objectives specified by confidence intervals, probability distributions, sampled data, or uncertainty sets. In this scope, this article first introduces a novel empirical approach for the comparison of candidate solutions with uncertain objectives that can follow arbitrary distributions. The comparison is performed through accurate and efficient calculations of the probability that one solution dominates the other in terms of each uncertain objective. Second, such an operator can be flexibly used and combined with many existing multi-objective optimization frameworks and techniques by just substituting their standard comparison operator, thus easily enabling the Pareto front optimization of problems with multiple uncertain objectives. Third, a new benchmark for evaluating uncertainty-aware optimization techniques is introduced by incorporating different types of uncertainties into a well-known benchmark for multi-objective optimization problems. Fourth, the new comparison operator and benchmark suite are integrated into an existing multi-objective optimization framework that features a selection of multi-objective optimization problems and algorithms. Fifth, the efficiency in terms of performance and execution time of the proposed comparison operator is evaluated on the introduced uncertainty benchmark. Finally, statistical tests are applied giving evidence of the superiority of the new comparison operator in terms of \epsilon -dominance and attainment surfaces in comparison to previously proposed approaches.


A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


2020 ◽  
Author(s):  
Xiang Yi ◽  
Xiaowei Yang ◽  
Han Huang ◽  
Jiahai Wang

Constrained multi-objective optimization problems exist widely in real-world applications, and they involve a simultaneous optimization of multiple and often conflicting objectives subject to several equality and/or inequality constraints. To deal with these problems, a crucial issue is how to handle constraints effectively. This paper proposes a simple yet effective constrained decomposition-based multi-objective evolutionary algorithm. In the proposal, the evolutionary process is divided into two stages in which constraints are handled differently. In the first stage, constraints are totally ignored and the population is pulled toward the unconstrained Pareto-optimal front (PF) by optimizing objectives only. This can help the proposed algorithm handle well problems with the following features, i.e., the constrained PF has an intersection with the unconstrained counterpart, and there are infeasible regions blocking the way of convergence. In the second stage, with the purpose of approximating the constrained PF well,constraint satisfaction is emphasized over objective minimization.Moreover, different evolutionary frameworks are adopted in the two stages to promote the performance of the algorithm as much as possible. The proposed algorithm is comprehensively compared with several state-of-the-art algorithms on 39 problems (with 266 test instances in total), including one real-world problem (with 36 instances) in search-based software engineering. As shown by the experimental results, the new algorithm performs best on the majority of these problems, particularly on those with the aforementioned features. In summary, the suggested algorithm provides an effective way of handling constrained multi-objective optimization problems.


Author(s):  
Saad M. Alzahrani ◽  
Naruemon Wattanapongsakorn

Nowadays, most real-world optimization problems consist of many and often conflicting objectives to be optimized simultaneously. Although, many current Multi-Objective optimization algorithms can efficiently solve problems with 3 or less objectives, their performance deteriorates proportionally with the increasing of the objectives number. Furthermore, in many situations the decision maker (DM) is not interested in all trade-off solutions obtained but rather interested in a single optimum solution or a small set of those trade-offs. Therefore, determining an optimum solution or a small set of trade-off solutions is a difficult task. However, an interesting method for finding such solutions is identifying solutions in the Knee region. Solutions in the Knee region can be considered the best obtained solution in the obtained trade-off set especially if there is no preference or equally important objectives. In this paper, a pruning strategy was used to find solutions in the Knee region of Pareto optimal fronts for some benchmark problems obtained by NSGA-II, MOEA/D-DE and a promising new Multi-Objective optimization algorithm NSGA-III. Lastly, those knee solutions found were compared and evaluated using a generational distance performance metric, computation time and a statistical one-way ANOVA test.


2021 ◽  
Author(s):  
Israel Mayo-Molina ◽  
Juliana Y. Leung

Abstract The Steam Alternating Solvent (SAS) process has been proposed and studied in recent years as a new auspicious alternative to the conventional thermal (steam-based) bitumen recovery process. The SAS process incorporates steam and solvent (e.g. propane) cycles injected alternatively using the same configuration as the Steam-Assisted Gravity-Drainage (SAGD) process. The SAS process offers many advantages, including lower capital and operational cost, as well as a reduction in water usage and lower Greenhouse Gas (GHG) Emissions. On the other hand, one of the main challenges of this relatively new process is the influence of uncertain reservoir heterogeneity distribution, such as shale barriers, on production behaviour. Many complex physical mechanisms, including heat transfer, fluid flows, and mass transfer, must be coupled. A proper design and selection of the operational parameters must consider several conflicting objectives. This work aims to develop a hybrid multi-objective optimization (MOO) framework for determining a set of Pareto-optimal SAS operational parameters under a variety of heterogeneity scenarios. First, a 2-D homogeneous reservoir model is constructed based on typical Cold lake reservoir properties in Alberta, Canada. The homogeneous model is used to establish a base scenario. Second, different shale barrier configurations with varying proportions, lengths, and locations are incorporated. Third, a detailed sensitivity analysis is performed to determine the most impactful parameters or decision variables. Based on the results of the sensitivity analysis, several objective functions are formulated (e.g., minimizing energy and solvent usage). Fourth, Response Surface Methodology (RSM) is applied to generate a set of proxy models to approximate the non-linear relationship between the decision variables and the objective functions and to reduce the overall computational time. Finally, three Multi-Objective Evolutionary Algorithms (MOEAs) are applied to search and compare the optimal sets of decision parameters. The study showed that the SAS process is sensitive to the shale barrier distribution, and that impact is strongly dependent on the location and length of a specific shale barrier. When a shale barrier is located near the injector well, pressure and temperature may build up in the near-well area, preventing additional steam and solvent be injected and, consequently, reducing the oil production. Operational constraints, such as bottom-hole pressure, steam trap criterion, and bottom-hole gas rate in the producer, are among various critical decision variables examined in this study. A key conclusion is that the optimal operating strategy should depend on the underlying heterogeneity. Although this notion has been alluded to in other previous steam- or solvent-based studies, this paper is the first to utilize a MOO framework for systematically determining a specific optimal strategy for each heterogeneity scenario. With the advancement of continuous downhole fibre-optic monitoring, the outcomes can potentially be integrated into other real-time reservoir characterization and optimization work-flows.


2013 ◽  
Vol 21 (1) ◽  
pp. 149-177 ◽  
Author(s):  
Vui Ann Shim ◽  
Kay Chen Tan ◽  
Jun Yong Chia ◽  
Abdullah Al Mamun

Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.


Author(s):  
Elyn L. Solano-Charris ◽  
Libardo S. Gómez-Vizcaíno ◽  
Jairo R. Montoya-Torres ◽  
Carlos D. Paternina-Arboleda

A large number of real-life optimization problems in economics and business are complex and difficult to solve. Hence, using approximate algorithms is a very good alternative to solve this class of problems. Meta-heuristics solution procedures represent general approximate algorithms applicable to a large variety of optimization problems. Most of the meta-heuristics mimic natural metaphors to solve complex optimization problems. This chapter presents a novel procedure based on Bacterial Phototaxis, called Global Bacteria Optimization (GBO) algorithm, to solve combinatorial optimization problems. The algorithm emulates the movement of an organism in response to stimulus from light. The effectiveness of the proposed meta-heuristic algorithm is first compared with the well-known meta-heuristic MOEA (Multi-Objective Evolutionary Algorithm) using mathematical functions. The performance of GBO is also analyzed by solving some single- and multi-objective classical jobshop scheduling problems against state-of-the-art algorithms. Experimental results on well-known instances show that GBO algorithm performs very well and even outperforms existing meta-heuristics in terms of computational time and quality of solution.


2020 ◽  
Author(s):  
Xiang Yi ◽  
Xiaowei Yang ◽  
Han Huang ◽  
Jiahai Wang

Constrained multi-objective optimization problems exist widely in real-world applications, and they involve a simultaneous optimization of multiple and often conflicting objectives subject to several equality and/or inequality constraints. To deal with these problems, a crucial issue is how to handle constraints effectively. This paper proposes a simple yet effective constrained decomposition-based multi-objective evolutionary algorithm. In the proposal, the evolutionary process is divided into two stages in which constraints are handled differently. In the first stage, constraints are totally ignored and the population is pulled toward the unconstrained Pareto-optimal front (PF) by optimizing objectives only. This can help the proposed algorithm handle well problems with the following features, i.e., the constrained PF has an intersection with the unconstrained counterpart, and there are infeasible regions blocking the way of convergence. In the second stage, with the purpose of approximating the constrained PF well,constraint satisfaction is emphasized over objective minimization.Moreover, different evolutionary frameworks are adopted in the two stages to promote the performance of the algorithm as much as possible. The proposed algorithm is comprehensively compared with several state-of-the-art algorithms on 39 problems (with 266 test instances in total), including one real-world problem (with 36 instances) in search-based software engineering. As shown by the experimental results, the new algorithm performs best on the majority of these problems, particularly on those with the aforementioned features. In summary, the suggested algorithm provides an effective way of handling constrained multi-objective optimization problems.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 509
Author(s):  
Qing Wang ◽  
Xiaoshuang Wang ◽  
Haiwei Luo ◽  
Jian Xiong

To certain degree, multi-objective optimization problems obey the law of symmetry, for instance, the minimum of one objective function corresponds to the maximum of another objective. To provide effective support for the multi-objective operation of the aerospace product shell production line, this paper studies multi-objective aerospace shell production scheduling problems. Firstly, a multi-objective optimization model for the production scheduling of aerospace product shell production lines is established. In the presented model, the maximum completion time and the cost of production line construction are optimized simultaneously. Secondly, to tackle the characteristics of discreteness, non-convexity and strong NP difficulty of the multi-objective problem, a knowledge-driven multi-objective evolutionary algorithm is designed to solve the problem. In the proposed approach, structural features of the scheduling plan are extracted during the optimization process and used to guide the subsequent optimization process. Finally, a set of test instances is generated to illustrate the addressed problem and test the proposed approach. The experimental results show that the knowledge-driven multi-objective evolutionary algorithm designed in this paper has better performance than the two classic multi-objective optimization methods.


2020 ◽  
Author(s):  
Xiang Yi ◽  
Xiaowei Yang ◽  
Han Huang ◽  
Jiahai Wang

Constrained multi-objective optimization problems exist widely in real-world applications, and they involve a simultaneous optimization of multiple and often conflicting objectives subject to several equality and/or inequality constraints. To deal with these problems, a crucial issue is how to handle constraints effectively. This paper proposes a simple yet effective constrained decomposition-based multi-objective evolutionary algorithm. In the proposal, the evolutionary process is divided into two stages in which constraints are handled differently. In the first stage, constraints are totally ignored and the population is pulled toward the unconstrained Pareto-optimal front (PF) by optimizing objectives only. This can help the proposed algorithm handle well problems with the following features, i.e., the constrained PF has an intersection with the unconstrained counterpart, and there are infeasible regions blocking the way of convergence. In the second stage, with the purpose of approximating the constrained PF well,constraint satisfaction is emphasized over objective minimization.Moreover, different evolutionary frameworks are adopted in the two stages to promote the performance of the algorithm as much as possible. The proposed algorithm is comprehensively compared with several state-of-the-art algorithms on 39 problems (with 266 test instances in total), including one real-world problem (with 36 instances) in search-based software engineering. As shown by the experimental results, the new algorithm performs best on the majority of these problems, particularly on those with the aforementioned features. In summary, the suggested algorithm provides an effective way of handling constrained multi-objective optimization problems.


Sign in / Sign up

Export Citation Format

Share Document