Design of Vehicle Stability Controller Based on Fuzzy Radial Basis Neural Network Sliding Mode Theory with Sideslip Angle Estimation

2021 ◽  
Vol 11 (3) ◽  
pp. 1231
Author(s):  
Zhenzhao Zhang ◽  
Liang Chu ◽  
Jiaxu Zhang ◽  
Chong Guo ◽  
Jing Li

This study is targeted at the key state parameters of vehicle stability controllers, the controlled vehicle model, and the nonlinearity and uncertainty of external disturbance. An adaptive double-layer unscented Kalman filter (ADUKF) is used to compute the sideslip angle, and a vehicle stability control algorithm adaptive fuzzy radial basis function neural network sliding mode control (AFRBF-SMC) is proposed. Since the sideslip angle cannot be directly determined, a 7-degrees-of-freedom (DOF) nonlinear vehicle dynamic model is established and combined with ADUKF to estimate the sideslip angle. After that, a vehicle stability sliding mode controller is designed and used to trace the ideal values of the vehicle stability parameters. To handle the severe system vibration due to the large robustness coefficient in the sliding mode controller, we use a fuzzy radial basis function neural network (FRBFNN) algorithm to approximate the uncertain disturbance of the system. Then the adaptive rate of the system is solved using the Lyapunov algorithm, and the systemic stability and convergence of this algorithm are validated. Finally, the controlling algorithm is verified through joint simulation on MATLAB/Simulink-Carsim. ADUKF can estimate the sideslip angle with high precision. The AFRBF-SMC vehicle stability controller performs well with high precision and low vibration and can ensure the driving stability of vehicles.

2011 ◽  
Vol 141 ◽  
pp. 303-307 ◽  
Author(s):  
Sheng Bin Hu ◽  
Min Xun Lu

To achieve the tracing control of a three-links spatial robot, a adaptive fuzzy sliding mode controller based on radial basis function neural network is proposed in this paper. The exponential sliding mode controller is divided into two parts: equivalent part and exponential corrective part. To realize the control without the model information of the system, a radial basis function neural network is designed to estimate the equivalent part. To diminish the chattering, a fuzzy controller is designed to adjust the corrective part according to sliding surface. The simulation studies have been carried out to show the tracking performance of a three-links spatial robot. Simulation results show the validity of the control scheme.


Author(s):  
Jin Wang ◽  
Anbang Zhai ◽  
Fan Xu ◽  
Haiyun Zhang ◽  
Guodong Lu

The problem of simultaneous position and internal force control is discussed with cooperative manipulators system under variable load and dynamic uncertainties in this study. A position synchronized sliding mode controller is proposed in the presence of variable load, as well as modeling uncertainties, joint friction, and external disturbances. To deal with the complex situation brought by variable load, virtual synchronization coupled errors are introduced for internal force tracking control and joint synchronization in the meantime. Dual feedforward neural networks are adopted, where a radial basis function-neural network based dynamic compensator and a radial basis function-neural network based internal force estimator are established, respectively, so that precise dynamic knowledge and force measurement are out of demand through their cooperation. Together with simulation studies and analysis, the position and internal force errors are shown to converge asymptotically to zero. Using Lyapunov stability approach, the proposed controller is proven to be robust in face of variable external load and the aforementioned uncertainties.


Author(s):  
Chenguang Liu ◽  
Wei Wang ◽  
Yong Guo ◽  
Shumin Chen ◽  
Aijun Li ◽  
...  

The dual-body tethered satellite system, which consists of two spacecraft connected by a single tether, is one of the most promising configurations in numerous space missions. To ensure the stability of deployment, the radial basis function neural network-based adaptive terminal sliding mode controller is proposed for the dual-body tethered satellite system with the model uncertainty and external disturbance. The terminal sliding mode controller serves as the main control framework for its properties of the strong robustness and finite-time convergence. The radial basis function neural network is adopted to approximate the model uncertainty, in which the weight vector of the radial basis function neural networks and the unknown upper bound of the external disturbance are estimated by using two adaptive laws. Finally, the Lyapunov theory and numerical simulations are used to prove the validity of the proposed controller.


2020 ◽  
Vol 8 (3) ◽  
pp. 210 ◽  
Author(s):  
Renqiang Wang ◽  
Donglou Li ◽  
Keyin Miao

To improve the tracking stability control of unmanned surface vehicles (USVs), an intelligent control algorithm was proposed on the basis of an optimized radial basis function (RBF) neural network. The design process was as follows. First, the adaptation value and mutation probability were modified to improve the traditional optimization algorithm. Then, the improved genetic algorithms (GA) were used to optimize the network parameters online to improve their approximation performance. Additionally, the RBF neural network was used to approximate the function uncertainties of the USV motion system to eliminate the chattering caused by the uninterrupted switching of the sliding surface. Finally, an intelligent control law was introduced based on the sliding mode control with the Lyapunov stability theory. The simulation tests showed that the intelligent control algorithm can effectively guarantee the control accuracy of USVs. In addition, a comparative study with the sliding mode control algorithm based on an RBF network and fuzzy neural network showed that, under the same conditions, the stabilization time of the intelligent control system was 33.33% faster, the average overshoot was reduced by 20%, the control input was smoother, and less chattering occurred compared to the previous two attempts.


Mechatronics ◽  
2003 ◽  
Vol 13 (4) ◽  
pp. 313-329 ◽  
Author(s):  
Shiuh-Jer Huang ◽  
Kuo-See Huang ◽  
Kuo-Ching Chiou

Sign in / Sign up

Export Citation Format

Share Document