scholarly journals Quantitative Set-Based Design to Inform Design Teams

2021 ◽  
Vol 11 (3) ◽  
pp. 1239
Author(s):  
Eric Specking ◽  
Nicholas Shallcross ◽  
Gregory S. Parnell ◽  
Edward Pohl

System designers, analysts, and engineers use various techniques to develop complex systems. A traditional design approach, point-based design (PBD), uses system decomposition and modeling, simulation, optimization, and analysis to find and compare discrete design alternatives. Set-based design (SBD) is a concurrent engineering technique that compares a large number of design alternatives grouped into sets. The existing SBD literature discusses the qualitative team-based characteristics of SBD, but lacks insights into how to quantitatively perform SBD in a team environment. This paper proposes a qualitative SBD conceptual framework for system design, proposes a team-based, quantitative SBD approach for early system design and analysis, and uses an unmanned aerial vehicle case study with an integrated model-based engineering framework to demonstrate the potential benefits of SBD. We found that quantitative SBD tradespace exploration can identify potential designs, assess design feasibility, inform system requirement analysis, and evaluate feasible designs. Additionally, SBD helps designers and analysts assess design decisions by providing an understanding of how each design decision affects the feasible design space. We conclude that SBD provides a more holistic tradespace exploration process since it provides an integrated examination of system requirements and design decisions.

Author(s):  
Colin Small ◽  
Gregory S Parnell ◽  
Ed Pohl ◽  
Simon R Goerger ◽  
Matthew Cilli ◽  
...  

The Engineered Resilient Systems research program seeks to improve decision making in the Analysis of Alternatives process by leveraging model-based engineering (MBE) early in the design process to develop more resilient systems. Traditional tradespace exploration using point-based design often converges quickly to an initial baseline design concept with subsequent engineering changes to modify the design. However, this process can lead to significant cost growth if the initial concept is not able to meet requirements or if the revised design is not affordable. Enabled by MBE, set-based design (SBD) considers sets of all possible design concepts and down-selects design concepts to converge to a final design using insights into design trade-off analysis, modeling and simulation, and test data. Using a notional unmanned aerial vehicle case study with low-fidelity physics-based models and an open source Excel® add-in called SIPmath©, this research implements an integrated MBE trade-off analytics framework that simultaneously generates numerous SBDs using parametric performance and cost models and evaluates the designs in the value and cost tradespace. In addition, this research explores incorporating resilience quantification and uncertainty into SBD trade-off analysis. Future research is needed to validate the use of SBD with low-fidelity models for tradespace exploration in early system design.


2019 ◽  
Vol 153 ◽  
pp. 185-192
Author(s):  
Eric Specking ◽  
Gregory Parnell ◽  
Edward Pohl ◽  
Randy Buchanan

2017 ◽  
Vol 35 (4) ◽  
pp. 380-396 ◽  
Author(s):  
Vladimir Ladinski

Purpose The purpose of this paper is to examine the impact of early design decisions made in the 1980s upon the future adaptability of the Gateshead Civic Centre building and the implementation of a workspace strategy in the 2010s, and how they have supported the efficiencies achieved through the increase in office workspace numbers, and the associated advantages of accommodating more employees within the Civic Centre. Design/methodology/approach Available documents related to the original development of the Gateshead Civic Centre and the 2010s workspace-related adaptations were examined to establish potential links between the two, and compare the findings with designing for adaptability-related research. Findings The results show that the early design decisions made in the 1980s have contributed to the future adaptability of the building and thus facilitated the implementation of a workspace strategy within Gateshead Metropolitan Borough Council in the 2010s. In addition, they have supported the achievement of other efficiencies through the increase in office workspace numbers and location of more employees within the Civic Centre. The findings can guide future trends within the Council, as well as inform organisations on the potential benefits of designing for adaptability. Originality/value The study provides a prospective consideration of how an early design decision influenced the long-term adaptability of the building.


Author(s):  
Eric Walkingshaw ◽  
Paul Strauss ◽  
Martin Erwig ◽  
Jonathan Mueller ◽  
Irem Tumer

The design of hardware-software systems is a complex and difficult task exacerbated by the very different tools used by designers in each field. Even in small projects, tracking the impact, motivation and context of individual design decisions between designers and over time quickly becomes intractable. In an attempt to bridge this gap, we present a general, low-level model of the system design process. We formally define the concept of a design decision, and provide a hierarchical representation of both the design space and the context in which decisions are made. This model can serve as a foundation for software-hardware system design tools which will help designers cooperate more efficiently and effectively. We provide a high-level example of the use of such a system in a design problem provided through collaboration with NASA.


2021 ◽  
pp. 147715352098742
Author(s):  
FŞ Yilmaz

Office buildings are building typologies where efficient and optimal use of lighting energy is crucial while providing comfortable visual environments. The purpose of this study is to explore the impact of diverse architectural design alternatives on lighting energy requirements and lighting energy saving possibilities through a case study. In this study, a total of 3888 design alternatives are investigated in a comparative way in terms of daylighting system design alternatives, artificial lighting system design scenarios, artificial lighting system control types and shading system control options. Introducing the adaptation process of the EN 15193-1:2017 standard for Turkey’s specific climatic and geographical conditions and considering diverse lighting design scenarios, results of this parametric study aim to underline the significance of architectural design strategies in office buildings for the reduction of lighting energy requirements.


2021 ◽  
Vol 9 (3) ◽  
pp. 2170031
Author(s):  
Betül Erdör Türk ◽  
Mustafa Hadi Sarul ◽  
Ekrem Çengelci ◽  
Çiğdem İyigün Karadağ ◽  
Fatma Gül Boyacı San ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 2927-2955
Author(s):  
Mar Palmeros Parada ◽  
Lotte Asveld ◽  
Patricia Osseweijer ◽  
John Alexander Posada

AbstractBiobased production has been promoted as a sustainable alternative to fossil resources. However, controversies over its impact on sustainability highlight societal concerns, value tensions and uncertainties that have not been taken into account during its development. In this work, the consideration of stakeholders’ values in a biorefinery design project is investigated. Value sensitive design (VSD) is a promising approach to the design of technologies with consideration of stakeholders’ values, however, it is not directly applicable for complex systems like biorefineries. Therefore, some elements of VSD, such as the identification of relevant values and their connection to a technology’s features, are brought into biorefinery design practice. Midstream modulation (MM), an approach to promoting the consideration of societal aspects during research and development activities, is applied to promote reflection and value considerations during the design decision making. As result, it is shown that MM interventions during the design process led to new design alternatives in support of stakeholders' values, and allowed to recognize and respond to emerging value tensions within the scope of the project. In this way, the present work shows a novel approach for the technical investigation of VSD, especially for biorefineries. Also, based on this work it is argued that not only reflection, but also flexibility and openness are important for the application of VSD in the context of biorefinery design.


Author(s):  
Deborah L. Thurston

Abstract A formal methodology is presented which may be used to evaluate design alternatives in the iterative design/redesign process. Deterministic multiattribute utility analysis is used to compare the overall utility or value of alternative designs as a function of the levels of several performance characteristics of a manufactured system. The evaluation function reflects the designers subjective preferences. Sensitivity analysis provides quantitative information as to how a design should be modified in order to increase its utility to the design decision maker. Improvements in one or more areas or performance and tradeoffs between attributes which would increase desirability of a design most may be quantified. A case study of materials selection and design in the automotive industry is presented. The methodology was applied to 6 automotive companies in the United States and Europe, and results are used to illustrate the steps followed in application.


Sign in / Sign up

Export Citation Format

Share Document