scholarly journals Improvement in the Convolutional Neural Network for Computed Tomography Images

2021 ◽  
Vol 11 (4) ◽  
pp. 1505
Author(s):  
Keisuke Manabe ◽  
Yusuke Asami ◽  
Tomonari Yamada ◽  
Hiroyuki Sugimori

Background and purpose. This study evaluated a modified specialized convolutional neural network (CNN) to improve the accuracy of medical images. Materials and Methods. We defined computed tomography (CT) images as belonging to one of the following 10 classes: head, neck, chest, abdomen, and pelvis with and without contrast media, with 10,000 images per class. We modified the CNN based on the AlexNet with an input size of 512 × 512. We resized the filter sizes of the convolution layer and max pooling. Using these modified CNNs, various models were created and evaluated. The improved CNN was evaluated to classify the presence or absence of the pancreas in the CT images. We compared the overall accuracy, which was calculated from images not used for training, to that of the ResNet. Results. The overall accuracies of the most improved CNN and ResNet in the 10 classes were 94.8% and 89.3%, respectively. The filter sizes of the improved CNN for the convolution layer were (13, 13), (7, 7), (5, 5), (5, 5), and (5, 5) in order from the first layer, and that of max-pooling was (7, 7). The calculation times of the most improved CNN and ResNet were 56 and 120 min, respectively. Regarding the classification of the pancreas, the overall accuracies of the most improved CNN and ResNet were 75.75% and 58.25%, respectively. The calculation times of the most improved CNN and ResNet were 36 and 55 min, respectively. Conclusion. By optimizing the filter size of the convolution layer and max-pooling of 512 × 512 images, we quickly obtained a highly accurate medical image classification model. This improved CNN can be useful for classifying lesions and anatomies for related diagnostic aid applications.

2020 ◽  
Vol 62 (10) ◽  
pp. 1257-1263
Author(s):  
Johanna Pitkänen ◽  
Juha Koikkalainen ◽  
Tuomas Nieminen ◽  
Ivan Marinkovic ◽  
Sami Curtze ◽  
...  

Abstract Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation. Methods The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI. Results A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group. Conclusion CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.


2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


2015 ◽  
Vol 26 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Francesco Ciompi ◽  
Bartjan de Hoop ◽  
Sarah J. van Riel ◽  
Kaman Chung ◽  
Ernst Th. Scholten ◽  
...  

2021 ◽  
Vol 16 ◽  
Author(s):  
Di Gai ◽  
Xuanjing Shen ◽  
Haipeng Chen

Background: The effective classification of the melting curve is conducive to measure the specificity of the amplified products and the influence of invalid data on subsequent experiments is excluded. Objective: In this paper, a convolutional neural network (CNN) classification model based on dynamic filter is proposed, which can categorize the number of peaks in the melting curve image and distinguish the pollution data represented by the noise peaks. Method: The main advantage of the proposed model is that it adopts the filter which changes with the input and uses the dynamic filter to capture more information in the image, making the network learning more accurate. In addition, the residual module is used to extract the characteristics of the melting curve, and the pooling operation is replaced with an atrous convolution to prevent the loss of context information. Result: In order to train the proposed model, a novel melting curve dataset is created, which includes a balanced dataset and an unbalanced dataset. The proposed method uses six classification-based assessment criteria to compare with seven representative methods based on deep learning. Experimental results show that proposed method is not only markedly outperforms the other state-of-the-art methods in accuracy, but also has much less running time. Conclusion: It evidently proves that the proposed method is suitable for judging the specificity of amplification products according to the melting curve. Simultaneously, it overcomes the difficulties of manual selection with low efficiency and artificial bias.


2020 ◽  
Vol 134 (4) ◽  
pp. 328-331 ◽  
Author(s):  
P Parmar ◽  
A-R Habib ◽  
D Mendis ◽  
A Daniel ◽  
M Duvnjak ◽  
...  

AbstractObjectiveConvolutional neural networks are a subclass of deep learning or artificial intelligence that are predominantly used for image analysis and classification. This proof-of-concept study attempts to train a convolutional neural network algorithm that can reliably determine if the middle turbinate is pneumatised (concha bullosa) on coronal sinus computed tomography images.MethodConsecutive high-resolution computed tomography scans of the paranasal sinuses were retrospectively collected between January 2016 and December 2018 at a tertiary rhinology hospital in Australia. The classification layer of Inception-V3 was retrained in Python using a transfer learning method to interpret the computed tomography images. Segmentation analysis was also performed in an attempt to increase diagnostic accuracy.ResultsThe trained convolutional neural network was found to have diagnostic accuracy of 81 per cent (95 per cent confidence interval: 73.0–89.0 per cent) with an area under the curve of 0.93.ConclusionA trained convolutional neural network algorithm appears to successfully identify pneumatisation of the middle turbinate with high accuracy. Further studies can be pursued to test its ability in other clinically important anatomical variants in otolaryngology and rhinology.


Sign in / Sign up

Export Citation Format

Share Document