scholarly journals Elucidating the Mechanical Energy for Cyclization of a DNA Origami Tile

2021 ◽  
Vol 11 (5) ◽  
pp. 2357
Author(s):  
Ruixin Li ◽  
Haorong Chen ◽  
Hyeongwoon Lee ◽  
Jong Hyun Choi

DNA origami has emerged as a versatile method to synthesize nanostructures with high precision. This bottom-up self-assembly approach can produce not only complex static architectures, but also dynamic reconfigurable structures with tunable properties. While DNA origami has been explored increasingly for diverse applications, such as biomedical and biophysical tools, related mechanics are also under active investigation. Here we studied the structural properties of DNA origami and investigated the energy needed to deform the DNA structures. We used a single-layer rectangular DNA origami tile as a model system and studied its cyclization process. This origami tile was designed with an inherent twist by placing crossovers every 16 base-pairs (bp), corresponding to a helical pitch of 10.67 bp/turn, which is slightly different from that of native B-form DNA (~10.5 bp/turn). We used molecular dynamics (MD) simulations based on a coarse-grained model on an open-source computational platform, oxDNA. We calculated the energies needed to overcome the initial curvature and induce mechanical deformation by applying linear spring forces. We found that the initial curvature may be overcome gradually during cyclization and a total of ~33.1 kcal/mol is required to complete the deformation. These results provide insights into the DNA origami mechanics and should be useful for diverse applications such as adaptive reconfiguration and energy absorption.

2021 ◽  
Author(s):  
Ruixin Li ◽  
Haorong Chen ◽  
Hyeongwoon Lee ◽  
Jong Hyun Choi

ABSTRACTDNA origami has emerged as a versatile method to synthesize nanostructures with high precision. This bottom-up self-assembly approach can produce not only complex static architectures, but also dynamic reconfigurable structures with tunable properties. While DNA origami has been explored increasingly for diverse applications such as biomedical and biophysical tools, related mechanics are also under active investigation. Here we studied the structural properties of DNA origami and investigated the energy needed to deform the DNA structures. We used a single-layer rectangular DNA origami tile as a model system and studied its cyclization process. This origami tile was designed with an inherent twist by placing crossovers every 16 base-pairs (bp), corresponding to a helical pitch of 10.67 bp/turn which is slightly different from that of native B-form DNA (10.5 bp/turn). We used molecular dynamics (MD) simulations based on a coarse-grained model on an open-source computational platform, oxDNA. We calculated the energies needed to overcome the initial curvature and induce mechanical deformation by applying linear spring forces. We found that the initial curvature may be overcome gradually during cyclization and a total of ~33.1 kcal/mol is required to complete the deformation. These results provide insights into the DNA origami mechanics and should be useful for diverse applications such as adaptive reconfiguration and energy absorption.


Author(s):  
Ruixin Li ◽  
Haorong Chen ◽  
Jong Hyun Choi

ABSTRACTArchitectured materials exhibit negative Poisson’s ratios and enhanced mechanical properties compared with regular materials. Their auxetic behaviors should emerge from periodic cellular structures regardless of the materials used. The majority of such metamaterials are constructed by top-down approaches and macroscopic with unit cells of microns or larger. On the other extreme, there are molecular-scale auxetics including naturally-occurring crystals which are not designable. There is a gap from few nanometers to microns, which may be filled by bottom-up biomolecular self-assembly. Here we demonstrate two-dimensional auxetic nanostructures using DNA origami. Structural reconfiguration experiments are performed by strand displacement and complemented by mechanical deformation studies using coarse-grained molecular dynamics (MD) simulations. We find that the auxetic properties of DNA nanostructures are mostly defined by geometrical designs, yet materials’ chemistry also plays an important role. From elasticity theory, we introduce a set of design principles for auxetic DNA metamaterials, which should find diverse applications.


2020 ◽  
Vol 11 ◽  
pp. 884-890
Author(s):  
Łukasz Baran ◽  
Wojciech Rżysko ◽  
Edyta Słyk

We introduce a molecular dynamics (MD) coarse-grained model for the description of tripod building blocks. This model has been used by us already for linear, V-shape, and tetratopic molecules. We wanted to further extend its possibilities to trifunctional molecules to prove its versatility. For the chosen systems we have also compared the MD results with Monte Carlo results on a triangular lattice. We have shown that the constraints present in the latter method can enforce the formation of completely different structures, not reproducible with off-lattice simulations. In addition to that, we have characterized the obtained structures regarding various parameters such as theoretical diffraction pattern and average association number.


2017 ◽  
Vol 46 (3) ◽  
pp. 1102-1112 ◽  
Author(s):  
Roman V Reshetnikov ◽  
Anastasia V Stolyarova ◽  
Arthur O Zalevsky ◽  
Dmitry Y Panteleev ◽  
Galina V Pavlova ◽  
...  

2008 ◽  
Vol 1135 ◽  
Author(s):  
Taiga Seki ◽  
Noriyoshi Arai ◽  
Taku Ozawa ◽  
Tomoko Shimada ◽  
Kenji Yasuoka ◽  
...  

ABSTRACTA coarse-grained model of peptide amphiphiles (PA) dissolved in aqueous solution was presented, where the effects of PA concentration, temperature and shear stress upon the self-assembly of PA were numerically studied by dissipative particle dynamics (DPD) simulation. We technically investigate the repulsion parameter aHW which indicates the repulsion force between the hydrophilic head of PA and water molecules, hence, at the same time, indicating the change in temperature. It was found that aHW played an important role in the self-assembly dynamics and in the resulting micro-structures of PA. By imposing shear strain on the simulation system, the formation of wormlike PA micelles was accelerated. The simulation results were in good agreement with our previous experimental results and the mechanism of shear-induced transition was proposed.


Nanoscale ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 1647-1660 ◽  
Author(s):  
Chao-Min Huang ◽  
Anjelica Kucinic ◽  
Jenny V. Le ◽  
Carlos E. Castro ◽  
Hai-Jun Su

We report a hybrid computational framework combining coarse-grained modeling with kinematic variance analysis for predicting uncertainties in the motion pathway of a multi-component DNA origami mechanism.


Structure ◽  
2008 ◽  
Vol 16 (4) ◽  
pp. 621-630 ◽  
Author(s):  
Kathryn A. Scott ◽  
Peter J. Bond ◽  
Anthony Ivetac ◽  
Alan P. Chetwynd ◽  
Syma Khalid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document