scholarly journals A General Framework Based on Machine Learning for Algorithm Selection in Constraint Satisfaction Problems

2021 ◽  
Vol 11 (6) ◽  
pp. 2749
Author(s):  
José C. Ortiz-Bayliss ◽  
Ivan Amaya ◽  
Jorge M. Cruz-Duarte ◽  
Andres E. Gutierrez-Rodriguez ◽  
Santiago E. Conant-Pablos ◽  
...  

Many of the works conducted on algorithm selection strategies—methods that choose a suitable solving method for a particular problem—start from scratch since only a few investigations on reusable components of such methods are found in the literature. Additionally, researchers might unintentionally omit some implementation details when documenting the algorithm selection strategy. This makes it difficult for others to reproduce the behavior obtained by such an approach. To address these problems, we propose to rely on existing techniques from the Machine Learning realm to speed-up the generation of algorithm selection strategies while improving the modularity and reproducibility of the research. The proposed solution model is implemented on a domain-independent Machine Learning module that executes the core mechanism of the algorithm selection task. The algorithm selection strategies produced in this work are implemented and tested rapidly compared against the time it would take to build a similar approach from scratch. We produce four novel algorithm selectors based on Machine Learning for constraint satisfaction problems to verify our approach. Our data suggest that these algorithms outperform the best performing algorithm on a set of test instances. For example, the algorithm selectors Multiclass Neural Network (MNN) and Multiclass Logistic Regression (MLR), powered by a neural network and linear regression, respectively, reduced the search cost (in terms of consistency checks) of the best performing heuristic (KAPPA), on average, by 49% for the instances considered for this work.

2019 ◽  
Vol 8 (3) ◽  
pp. 7809-7817

Creating a fast domain independent ontology through knowledge acquisition is a key problem to be addressed in the domain of knowledge engineering. Updating and validation is impossible without the intervention of domain experts, which is an expensive and tedious process. Thereby, an automatic system to model the ontology has become essential. This manuscript presents a machine learning model based on heterogeneous data from multiple domains including agriculture, health care, food and banking, etc. The proposed model creates a complete domain independent process that helps in populating the ontology automatically by extracting the text from multiple sources by applying natural language processing and various techniques of data extraction. The ontology instances are classified based on the domain. A Jaccord Relationship extraction process and the Neural Network Approval for Automated Theory is used for retrieval of data, automated indexing, mapping and knowledge discovery and rule generation. The results and solutions show the proposed model can automatically and efficiently construct automated Ontology


2008 ◽  
Vol 17 (02) ◽  
pp. 321-337 ◽  
Author(s):  
KOSTAS STERGIOU

The Quantified Constraint Satisfaction Problem (QCSP) is an extension of the CSP that can be used to model combinatorial problems containing contingency or uncertainty. It allows for universally quantified variables that can model uncertain actions and events, such as the unknown weather for a future party, or an opponent's next move in a game. Although interest in QCSPs is increasing in recent years, the development of techniques for handling QCSPs is still at an early stage. For example, although it is well known that local consistencies are of primary importance in CSPs, only arc consistency has been extended to quantified problems. In this paper we contribute towards the development of solution methods for QCSPs in two ways. First, by extending directional arc and path consistency, two popular local consistencies in constraint satisfaction, to the quantified case and proposing an algorithm that achieves these consistencies. Second, by showing how value ordering heuristics can be utilized to speed up computation in QCSPs. We study the impact of preprocessing QCSPs with value reordering and directional quantified arc and path consistency by running experiments on randomly generated problems. Results show that our preprocessing methods can significantly speed up the QCSP solving process, especially on hard instances from the phase transition region.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fengyi Zhang ◽  
Xinyuan Cui ◽  
Renrong Gong ◽  
Chuan Zhang ◽  
Zhigao Liao

This study aimed to provide effective methods for the identification of surgeries with high cancellation risk based on machine learning models and analyze the key factors that affect the identification performance. The data covered the period from January 1, 2013, to December 31, 2014, at West China Hospital in China, which focus on elective urologic surgeries. All surgeries were scheduled one day in advance, and all cancellations were of institutional resource- and capacity-related types. Feature selection strategies, machine learning models, and sampling methods are the most discussed topic in general machine learning researches and have a direct impact on the performance of machine learning models. Hence, they were considered to systematically generate complete schemes in machine learning-based identification of surgery cancellations. The results proved the feasibility and robustness of identifying surgeries with high cancellation risk, with the considerable maximum of area under the curve (AUC) (0.7199) for random forest model with original sampling using backward selection strategy. In addition, one-side Delong test and sum of square error analysis were conducted to measure the effects of feature selection strategy, machine learning model, and sampling method on the identification of surgeries with high cancellation risk, and the selection of machine learning model was identified as the key factors that affect the identification of surgeries with high cancellation risk. This study offers methodology and insights for identifying the key experimental factors for identifying surgery cancellations, and it is helpful to further research on machine learning-based identification of surgeries with high cancellation risk.


2021 ◽  
Vol 4 ◽  
Author(s):  
Przemysław Juda ◽  
Philippe Renard

In hydrogeology, inverse techniques have become indispensable to characterize subsurface parameters and their uncertainty. When modeling heterogeneous, geologically realistic discrete model spaces, such as categorical fields, Monte Carlo methods are needed to properly sample the solution space. Inversion algorithms use a forward operator, such as a numerical groundwater solver. The forward operator often represents the bottleneck for the high computational cost of the Monte Carlo sampling schemes. Even if efficient sampling methods (for example Posterior Population Expansion, PoPEx) have been developed, they need significant computing resources. It is therefore desirable to speed up such methods. As only a few models generated by the sampler have a significant likelihood, we propose to predict the significance of generated models by means of machine learning. Only models labeled as significant are passed to the forward solver, otherwise, they are rejected. This work compares the performance of AdaBoost, Random Forest, and convolutional neural network as classifiers integrated with the PoPEx framework. During initial iterations of the algorithm, the forward solver is always executed and subsurface models along with the likelihoods are stored. Then, the machine learning schemes are trained on the available data. We demonstrate the technique using a simulation of a tracer test in a fluvial aquifer. The geology is modeled by the multiple-point statistical approach, the field contains four geological facies, with associated permeability, porosity, and specific storage values. MODFLOW is used for groundwater flow and transport simulation. The solution of the inverse problem is used to estimate the 10 days protection zone around the pumping well. The estimated speed-ups with Random Forest and AdaBoost were higher than with the convolutional neural network. To validate the approach, computing times of inversion without and with machine learning schemes were computed and the error against the reference solution was calculated. For the same mean error, accelerated PoPEx achieved a speed-up rate of up to 2 with respect to the standard PoPEx.


Sign in / Sign up

Export Citation Format

Share Document