scholarly journals Rhodotorula Strains Isolated from Seawater That Can Biotransform Raw Glycerol into Docosahexaenoic Acid (DHA) and Carotenoids for Animal Nutrition

2021 ◽  
Vol 11 (6) ◽  
pp. 2824
Author(s):  
Natalie L. Pino-Maureira ◽  
Rodrigo R. González-Saldía ◽  
Alejandro Capdeville ◽  
Benjamín Srain

Due to the overexploitation of industrial fisheries, as the principal source of fish oil, as well as the increasing replacement of synthetic pigments for animal nutrition, we need to find sustainable sources for these essential nutrient productions. Marine Rhodotorula strains NCYC4007 and NCYC1146 were used to determine the biosynthesis of docosahexaenoic acid (DHA) and carotenoids by biotransforming raw glycerol, a waste product of biodiesel. To evaluate the presence of inhibitory substances in raw glycerol, both strains were also grown in the presence of analytical grade glycerol and glucose as the main carbon source separately. With raw glycerol, NCYC4007 showed a significant correlation between DHA production and intracellular phosphorous concentrations. NCYC1146, a new Rhodotorula strain genetically described in this work, can produce canthaxanthin but only when glycerol is used as a main carbon source. Then, NCYC4007 could synthesize DHA as a phospholipid, and the production of canthaxanthin depends on the kind of carbon source used by NCYC1146. Finally, malate dehydrogenase activity and glucose production can be used as a proxy of the metabolisms in these marine Rhodotorula. This is the first evidence that marine Rhodotorula are capable of synthesizing DHA and canthaxanthin using an alternative and low-cost source of carbon to potentially scale their sustainable production for animal nutrition.


1972 ◽  
Vol 129 (2) ◽  
pp. 263-272 ◽  
Author(s):  
A. G. Dickerson

Evidence suggests that sucrose is the main carbon source for growth of Claviceps spp. in the parasitic condition. The sucrose acts as substrate for an active β-fructofuranosidase, produced by the fungus, which in the first instance converts the disaccharide into glucose and an oligofructoside. In this way, 50% of the glucose, supplied as sucrose, is made available to the parasite for assimilation. Subsequent action of the enzyme on both sucrose and the oligofructoside leads to the release of more glucose and the formation of additional oligosaccharides. The structures of the main oligosaccharides formed have been elucidated and the interactions of each compound studied. In experiments with purified enzyme in vitro the interaction of the oligosaccharides is rapid but in culture they are assimilated only slowly; in each case some free fructose is liberated. Free fructose is not assimilated in the presence of glucose and, further, inhibits growth at concentrations which might be expected to occur in the parasitic condition. A dual role has been suggested for the enzyme, with sucrose as substrate, in which glucose is made available to the growing parasite, while at the same time transfer of the fructose to form oligosaccharides prevents it from accumulating at inhibitory concentrations. Ultimately, when glucose becomes limiting, the fungus will adapt to fructose assimilation.



2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Jing Chen ◽  
Wei Li ◽  
Zhao-Zhou Zhang ◽  
Tian-Wei Tan ◽  
Zheng-Jun Li




2012 ◽  
Vol 35 (6) ◽  
pp. 897-906 ◽  
Author(s):  
M. Sousa ◽  
V. M. M. Melo ◽  
S. Rodrigues ◽  
H. B. Sant’ana ◽  
L. R. B. Gonçalves


2012 ◽  
Vol 18 (2) ◽  
pp. 273-282 ◽  
Author(s):  
A. Shahravy ◽  
F. Tabandeh ◽  
B. Bambai ◽  
H.R. Zamanizadeh ◽  
M. Mizani

This study was conducted to optimize culture conditions for economic production of a probiotic bacterium, Lactobacillus casei ATCC 334, in which palm date powder was applied for the first time as a low-cost main carbon source. The effect of eleven factors on bacterial growth was investigated using the Taguchi experimental design, and three factors including palm date powder, tryptone and agitation rate were found to be the most significant parameters. The optimum conditions including date powder concentration, 38 g/L; tryptone concentration, 30 g/L; and an agitation rate of 320 rpm were determined by response surface methodology of Box-Behnken. A third-order polynomial model was suggested to predict the design space following which the predicted values were validated experimentally. The maximum log value of the viable cells in the optimized alternative medium was 9.97 at 24 h of incubation which was comparable to that obtained in the complex and expensive MRS medium (10.06).



2003 ◽  
Vol 58 (9-10) ◽  
pp. 708-712 ◽  
Author(s):  
Telma Elita Bertolin ◽  
Willibaldo Schmidell ◽  
Alfredo E. Maiorano ◽  
Janice Casara ◽  
Jorge A. V. Costa

AbstractIt was the objective of the present study to increase the production of glucoamylase by Aspergillus awamori through solid state fermentation, using wheat bran as the main carbon source and (NH4)2SO4, urea, KH2PO4, glucose, maltose and starch as additional nitrogen, phosphorus, and carbon sources. The production of glucoamylase is strongly influenced by N and C sources. A 100% increase was observed when the (NH4)2SO4 was replaced by urea, with C/N = 4.8, using maltose as the additional carbon source. C/P ratios in a range of 5.1 to 28.7 did not induce glucoamylase production under the studied conditions.



2020 ◽  
Vol 117 (39) ◽  
pp. 24088-24095
Author(s):  
Laura L. Haynes ◽  
Bärbel Hönisch

The Paleocene–Eocene Thermal Maximum (PETM) (55.6 Mya) was a geologically rapid carbon-release event that is considered the closest natural analog to anthropogenic CO2 emissions. Recent work has used boron-based proxies in planktic foraminifera to characterize the extent of surface-ocean acidification that occurred during the event. However, seawater acidity alone provides an incomplete constraint on the nature and source of carbon release. Here, we apply previously undescribed culture calibrations for the B/Ca proxy in planktic foraminifera and use them to calculate relative changes in seawater-dissolved inorganic carbon (DIC) concentration, surmising that Pacific surface-ocean DIC increased by +1,010−646+1,415 µmol/kg during the peak-PETM. Making reasonable assumptions for the pre-PETM oceanic DIC inventory, we provide a fully data-driven estimate of the PETM carbon source. Our reconstruction yields a mean source carbon δ13C of −10‰ and a mean increase in the oceanic C inventory of +14,900 petagrams of carbon (PgC), pointing to volcanic CO2 emissions as the main carbon source responsible for PETM warming.



Sign in / Sign up

Export Citation Format

Share Document