scholarly journals Influence of Carbon, Nitrogen and Phosphorous Sources on Glucoamylase Production by Aspergillus awamori in Solid State Fermentation

2003 ◽  
Vol 58 (9-10) ◽  
pp. 708-712 ◽  
Author(s):  
Telma Elita Bertolin ◽  
Willibaldo Schmidell ◽  
Alfredo E. Maiorano ◽  
Janice Casara ◽  
Jorge A. V. Costa

AbstractIt was the objective of the present study to increase the production of glucoamylase by Aspergillus awamori through solid state fermentation, using wheat bran as the main carbon source and (NH4)2SO4, urea, KH2PO4, glucose, maltose and starch as additional nitrogen, phosphorus, and carbon sources. The production of glucoamylase is strongly influenced by N and C sources. A 100% increase was observed when the (NH4)2SO4 was replaced by urea, with C/N = 4.8, using maltose as the additional carbon source. C/P ratios in a range of 5.1 to 28.7 did not induce glucoamylase production under the studied conditions.

1972 ◽  
Vol 129 (2) ◽  
pp. 263-272 ◽  
Author(s):  
A. G. Dickerson

Evidence suggests that sucrose is the main carbon source for growth of Claviceps spp. in the parasitic condition. The sucrose acts as substrate for an active β-fructofuranosidase, produced by the fungus, which in the first instance converts the disaccharide into glucose and an oligofructoside. In this way, 50% of the glucose, supplied as sucrose, is made available to the parasite for assimilation. Subsequent action of the enzyme on both sucrose and the oligofructoside leads to the release of more glucose and the formation of additional oligosaccharides. The structures of the main oligosaccharides formed have been elucidated and the interactions of each compound studied. In experiments with purified enzyme in vitro the interaction of the oligosaccharides is rapid but in culture they are assimilated only slowly; in each case some free fructose is liberated. Free fructose is not assimilated in the presence of glucose and, further, inhibits growth at concentrations which might be expected to occur in the parasitic condition. A dual role has been suggested for the enzyme, with sucrose as substrate, in which glucose is made available to the growing parasite, while at the same time transfer of the fructose to form oligosaccharides prevents it from accumulating at inhibitory concentrations. Ultimately, when glucose becomes limiting, the fungus will adapt to fructose assimilation.


2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


2021 ◽  
Author(s):  
Musaalbakri Abdul Manan ◽  
Colin Webb

Abstract A newly designed, laboratory-scaled and multi-layer squared tray solid state bioreactor (SSB), was developed and successfully operated in solid state fermentation (SSF) conditions. The bioreactor was divided into eight layers of squared perforated trays. Wheat bran was used as a solid substrate for the growth of Aspergillus awamori and Aspergillus oryzae. The SSB was equipped with an oxygen (O2)/carbon dioxide (CO2) gas analyser and a thermocouple. Continuous on-line monitoring of fungal growth could be performed by indirect methods that measure O2 consumed, production of CO2 and metabolic heat. The advantage of using this method is that there are no tedious and time-consuming sampling processes. The evolution of CO2, which represents an accumulation term, was integrated with time and fitted to the Gompertz model in a log-like equation. The Gompertz model generated values that may be used to stimulate and verify the experimental data. Results strongly suggest that the evolved and accumulated CO2, excellently described fungal growth. Simulated results agreed with experimental results. The respiratory quotient (RQ), which is the ratio of CO2 evolution rate (CER) to O2 uptake rate (OUR), was determined by the gas balance method. CER and OUR confirmed that measurements correlated to fungal activity. Each RQ values can explain the differences of each SFF process carried out. Yet, heat evolved by fungal activity also described fungal growth. The current findings is an excellent pre-liminary experimental work, evidencing that multi-layer squared tray SSB with forced moistened aeration present a promising alternative of instrumented bioreactors for SSF processes.


Sign in / Sign up

Export Citation Format

Share Document