scholarly journals Learning Local Descriptor for Comparing Renders with Real Images

2021 ◽  
Vol 11 (8) ◽  
pp. 3301
Author(s):  
Pamir Ghimire ◽  
Igor Jovančević ◽  
Jean-José Orteu

We present a method to train a deep-network-based feature descriptor to calculate discriminative local descriptions from renders and corresponding real images with similar geometry. We are interested in using such descriptors for automatic industrial visual inspection whereby the inspection camera has been coarsely localized with respect to a relatively large mechanical assembly and presence of certain components needs to be checked compared to the reference computer-aided design model (CAD). We aim to perform the task by comparing the real inspection image with the render of textureless 3D CAD using the learned descriptors. The descriptor was trained to capture geometric features while staying invariant to image domain. Patch pairs for training the descriptor were extracted in a semisupervised manner from a small data set of 100 pairs of real images and corresponding renders that were manually finely registered starting from a relatively coarse localization of the inspection camera. Due to the small size of the training data set, the descriptor network was initialized with weights from classification training on ImageNet. A two-step training is proposed for addressing the problem of domain adaptation. The first, “bootstrapping”, is a classification training to obtain good initial weights for second training step, triplet-loss training, that provides weights for extracting the discriminative features comparable using l2 distance. The descriptor was tested for comparing renders and real images through two approaches: finding local correspondences between the images through nearest neighbor matching and transforming the images into Bag of Visual Words (BoVW) histograms. We observed that learning a robust cross-domain descriptor is feasible, even with a small data set, and such features might be of interest for CAD-based inspection of mechanical assemblies, and related applications such as tracking or finely registered augmented reality. To the best of our knowledge, this is the first work that reports learning local descriptors for comparing renders with real inspection images.

2009 ◽  
pp. 300-308
Author(s):  
Chun-Jung Huang ◽  
Hsiao-Fan Wang ◽  
Shouyang Wang

One of the key problems in supervised learning is due to the insufficient size of the training data set. The natural way for an intelligent learning process to counter this problem and successfully generalize is to exploit prior information that may be available about the domain or that can be learned from prototypical examples. According to the concept of creating virtual samples, the intervalized kernel method of density estimation (IKDE) was proposed to improve the learning ability from a small data set. To demonstrate its theoretical validity, we provided a theorem based on Decomposition Theory. In addition, we proposed an alternative approach to achieving the better learning performance of IKDE.


2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoya Shiode ◽  
Mototaka Kabashima ◽  
Yuta Hiasa ◽  
Kunihiro Oka ◽  
Tsuyoshi Murase ◽  
...  

AbstractThe purpose of the study was to develop a deep learning network for estimating and constructing highly accurate 3D bone models directly from actual X-ray images and to verify its accuracy. The data used were 173 computed tomography (CT) images and 105 actual X-ray images of a healthy wrist joint. To compensate for the small size of the dataset, digitally reconstructed radiography (DRR) images generated from CT were used as training data instead of actual X-ray images. The DRR-like images were generated from actual X-ray images in the test and adapted to the network, and high-accuracy estimation of a 3D bone model from a small data set was possible. The 3D shape of the radius and ulna were estimated from actual X-ray images with accuracies of 1.05 ± 0.36 and 1.45 ± 0.41 mm, respectively.


2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


2021 ◽  
pp. 1-13
Author(s):  
Yapeng Wang ◽  
Ruize Jia ◽  
Chan Tong Lam ◽  
Ka Cheng Choi ◽  
Koon Kei Ng ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4408 ◽  
Author(s):  
Hyun-Myung Cho ◽  
Heesu Park ◽  
Suh-Yeon Dong ◽  
Inchan Youn

The goals of this study are the suggestion of a better classification method for detecting stressed states based on raw electrocardiogram (ECG) data and a method for training a deep neural network (DNN) with a smaller data set. We suggest an end-to-end architecture to detect stress using raw ECGs. The architecture consists of successive stages that contain convolutional layers. In this study, two kinds of data sets are used to train and validate the model: A driving data set and a mental arithmetic data set, which smaller than the driving data set. We apply a transfer learning method to train a model with a small data set. The proposed model shows better performance, based on receiver operating curves, than conventional methods. Compared with other DNN methods using raw ECGs, the proposed model improves the accuracy from 87.39% to 90.19%. The transfer learning method improves accuracy by 12.01% and 10.06% when 10 s and 60 s of ECG signals, respectively, are used in the model. In conclusion, our model outperforms previous models using raw ECGs from a small data set and, so, we believe that our model can significantly contribute to mobile healthcare for stress management in daily life.


Sign in / Sign up

Export Citation Format

Share Document