scholarly journals Classification with Fuzzification Optimization Combining Fuzzy Information Systems and Type-2 Fuzzy Inference

2021 ◽  
Vol 11 (8) ◽  
pp. 3484
Author(s):  
Martin Tabakov ◽  
Adrian Chlopowiec ◽  
Adam Chlopowiec ◽  
Adam Dlubak

In this research, we introduce a classification procedure based on rule induction and fuzzy reasoning. The classifier generalizes attribute information to handle uncertainty, which often occurs in real data. To induce fuzzy rules, we define the corresponding fuzzy information system. A transformation of the derived rules into interval type-2 fuzzy rules is provided as well. The fuzzification applied is optimized with respect to the footprint of uncertainty of the corresponding type-2 fuzzy sets. The classification process is related to a Mamdani type fuzzy inference. The method proposed was evaluated by the F-score measure on benchmark data.

Author(s):  
Alexander Zakovorotniy ◽  
Artem Kharchenko

Definitions and methods of designing interval type-2 fuzzy sets in fuzzy inference systems for control problems of complex technical objects in conditions of uncertainty are considered. The main types of uncertainties, that arise when designing fuzzy inference systems and depend on the number of expert assessments, are described. Methods for assessing intra-uncertainty and inter-uncertainty are proposed, taking into account the different number of expert assessments at the stage of determining the types and number of membership functions. Factors influencing the parameters and properties of interval type-2 fuzzy during experimental studies are determined. Such factors include the number of experiments performed, external factors, technical parameters of the control object, and the reliability of the components of the computer system decision support system. The properties of the lower and upper membership functions of interval type-2 fuzzy sets are investigated on the example of the Gaussian membership function, which is one of the most used in the problems of fuzzy inference systems design. The main features and differences in the methods of determining the lower and upper membership functions of interval type-2 fuzzy sets for different types of uncertainties are taken into account. Methods for determining the footprint of uncertainty, as well as the dependence of its size on the number of expert assessments, are considered. The footprint of uncertainty is characterized by the lower and upper membership functions, and its size directly affects the accuracy of the obtained solutions. Methods for determining interval type-2 fuzzy sets using regulation factors of membership function parameters for intra-uncertainty and weighting factors of membership functions for inter-uncertainties have been developed. The regulation factor of the function parameters can be used to describe the lower and upper membership functions while determining the size of the footprint of uncertainty. Complex interval type-2 sets are determined to take into account inter-uncertainties in the problems of fuzzy inference systems design.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
İlker Gölcük

PurposeThis paper proposes an integrated IT2F-FMEA model under a group decision-making setting. In risk assessment models, experts' evaluations are often aggregated beforehand, and necessary computations are performed, which in turn, may cause a loss of information and valuable individual opinions. The proposed integrated IT2F-FMEA model aims to calculate risk priority numbers from the experts' evaluations and then fuse experts' judgments using a novel integrated model.Design/methodology/approachThis paper presents a novel failure mode and effect analysis (FMEA) model by integrating the fuzzy inference system, best-worst method (BWM) and weighted aggregated sum-product assessment (WASPAS) methods under interval type-2 fuzzy (IT2F) environment. The proposed FMEA approach utilizes the Mamdani-type IT2F inference system to calculate risk priority numbers. The individual FMEA results are combined by using integrated IT2F-BWM and IT2F-WASPAS methods.FindingsThe proposed model is implemented in a real-life case study in the furniture industry. According to the case study, fifteen failure modes are considered, and the proposed integrated method is used to prioritize the failure modes.Originality/valueMamdani-type singleton IT2F inference model is employed in the FMEA. Additionally, the proposed model allows experts to construct their membership functions and fuzzy rules to capitalize on the experience and knowledge of the experts. The proposed group FMEA model aggregates experts' judgments by using IT2F-BWM and IT2F-WASPAS methods. The proposed model is implemented in a real-life case study in the furniture company.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1548
Author(s):  
Marjana Čubranić-Dobrodolac ◽  
Libor Švadlenka ◽  
Svetlana Čičević ◽  
Aleksandar Trifunović ◽  
Momčilo Dobrodolac

A constantly increasing number of deaths on roads forces analysts to search for models that predict the driver’s propensity for road traffic accidents (RTAs). This paper aims to examine a relationship between the speed and space assessment capabilities of drivers in terms of their association with the occurrence of RTAs. The method used for this purpose is based on the implementation of the interval Type-2 Fuzzy Inference System (T2FIS). The inputs to the first T2FIS relate to the speed assessment capabilities of drivers. These capabilities were measured in the experiment with 178 young drivers, with test speeds of 30, 50, and 70 km/h. The participants assessed the aforementioned speed values from four different observation positions in the driving simulator. On the other hand, the inputs of the second T2FIS are space assessment capabilities. The same group of drivers took two types of space assessment tests—2D and 3D. The third considered T2FIS sublimates of all previously mentioned inputs in one model. The output in all three T2FIS structures is the number of RTAs experienced by a driver. By testing three proposed T2FISs on the empirical data, the result of the research indicates that the space assessment characteristics better explain participation in RTAs compared to the speed assessment capabilities. The results obtained are further confirmed by implementing a multiple regression analysis.


Author(s):  
Juan Barraza ◽  
Fevrier Valdez ◽  
Patricia Melin ◽  
Claudia I. Gonzalez

This chapter presents Interval Type 2 Fuzzy Fireworks Algorithm for clustering (IT2FWAC). It is an optimization method for finding the optimal number of clusters based on the centroid features which uses the Fireworks Algorithm (FWA), but with a dynamic adjustment of parameters using an Interval Type 2 Fuzzy Inference System (IT2FIS). Three variations of the IT2FWAC are proposed to find the optimal number of clusters for different datasets: IT2FWAC -I, IT2FWAC -II, and IT2FWAC –III. They are explained in detail.


Sign in / Sign up

Export Citation Format

Share Document