scholarly journals Integrated Optical Phased Arrays for Beam Forming and Steering

2021 ◽  
Vol 11 (9) ◽  
pp. 4017
Author(s):  
Yongjun Guo ◽  
Yuhao Guo ◽  
Chunshu Li ◽  
Hao Zhang ◽  
Xiaoyan Zhou ◽  
...  

Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end.

2019 ◽  
Vol 27 (4) ◽  
pp. 5851 ◽  
Author(s):  
Nicola A. Tyler ◽  
Daivid Fowler ◽  
Stephane Malhouitre ◽  
Stephanie Garcia ◽  
Philippe Grosse ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (41-42) ◽  
pp. 2283-2288 ◽  
Author(s):  
Viktoriia E. Babicheva

ABSTRACTHigh-index materials such as silicon and III-V compounds have recently gained a lot of interest as a promising material platform for efficient photonic nanostructures. Because of the high refractive index, nanoparticles of such materials support Mie resonances and enable efficient light control and its confinement at the nanoscale. Here we propose a design of nanostructure with multipole resonances where optical nanoantennas are made out of transition metal dichalcogenide, in particular, tungsten disulfide WS2. Transition metal dichalcogenide (TMDCs) possess a high refractive index and strong optical anisotropy because of their layered structure and are promising building blocks for next-generation photonic devices. Strong anisotropic response results in different components of TMDC permittivity and the possibility of tailoring nanostructure optical properties by choosing different axes and adjusting dimensions in design. The proposed periodic array of TMDC nanoantennas can be used for controlling optical resonances in the visible and near-infrared spectral ranges and engineering efficient ultra-thin optical components with nanoscale light confinement.


Author(s):  
Jelena Notaros ◽  
Milica Notaros ◽  
Manan Raval ◽  
Christopher V. Poulton ◽  
Matthew J. Byrd ◽  
...  

2017 ◽  
Author(s):  
Dwayne D. Macik ◽  
Tyler E. Bravo ◽  
Seeley M. Pentecost ◽  
Francisco A. Espinal ◽  
Christi K. Madsen

2000 ◽  
Vol 638 ◽  
Author(s):  
A.B. Pevtsov ◽  
V.G. Golubev ◽  
V.A. Kosobukin ◽  
D.A. Kurdyukov ◽  
A.V. Medvedev

AbstractThree-dimensional opal-silicon composites with both direct (a variable extent of filling of opal voids with silicon) and inverted structures have been synthesized. A structural analysis of these fabricated systems is performed. Reflectance spectra from the (111) surface of the composites are measured within the spectral range 400-900 nm. Observed spectral features are interpreted as a manifestation of the [111] direction photonic band gap that is tunable in position and width in the visible and near-infrared spectral ranges.


2020 ◽  
Vol 44 (2) ◽  
pp. 195-202
Author(s):  
V.M. Vladimirov ◽  
V.A. Yukseev ◽  
E.G. Lapukhin

In this work, we propose a high-resolution optical system for Earth remote sensing, operating at 200-3300-nm wavelengths and providing a 4º field of view. Parameters of the system's structural elements are calculated and presented. Dot charts of the spots of confusion for the center, intermediate zones, and the edge of the field are considered. Over most of the operating wavelengths, the optical system is shown to be diffraction-limited, which provides attaining the highest possible spatial resolution. This system is considered as a tool for monitoring of the Earth's surface and collection of information in the ultra-violet, visible and near infrared spectral ranges (200-3300 nanometers).


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Alexey V. Krasavin ◽  
Pan Wang ◽  
Mazhar E. Nasir ◽  
Yunlu Jiang ◽  
Anatoly V. Zayats

AbstractWe demonstrate a metamaterial platform for electrically driven broadband light emission induced by electron tunneling. Both the Fabry-Perot and waveguided modes of the metamaterial slab as well the plasmonic mode of the tunneling gap are identified as contributing to shaping the emission spectrum. This opens up an opportunity to design the spectrum and polarization of the emitted light by tuning the metamaterial modes via the geometric parameters of the nanostructure throughout the visible and near-infrared spectral ranges. The efficient coupling of the tunneling-induced emission to the waveguided modes is beneficial for the development of integrated incoherent light sources, while the outcoupled emission provides a source of free-space radiation. The demonstrated incoherent nanoscale light sources may find applications in the development of integrated opto-electronic circuits, optical sensing platforms, imaging, and metrology.


Sign in / Sign up

Export Citation Format

Share Document