scholarly journals Crawling Magnetic Robot to Perform a Biopsy in Tubular Environments by Controlling a Magnetic Field

2021 ◽  
Vol 11 (11) ◽  
pp. 5292
Author(s):  
Eunsoo Jung ◽  
Jaekwang Nam ◽  
Wonseo Lee ◽  
Jongyul Kim ◽  
Gunhee Jang

We developed a crawling magnetic robot (CMR), which can stably navigate and perform biopsies remotely in tubular environments by controlling a magnetic field. The CMR is composed of a crawling part and a biopsy part. The crawling part allows the CMR to crawl forward and backward via an asymmetric friction force generated by an external precessional magnetic field. The biopsy part closes or opens the cover of a needle to use the biopsy needle selectively with the control of the external precessional magnetic field. The cover of the biopsy part prevents damage to the tubular environments because the biopsy needle is inside the cover while the CMR is navigating. We developed the design of the proposed CMR using magnetic torque constraints and a magnetic force constraint, and then we fabricated the CMR with three-dimensional printing technology. Finally, we conducted an experiment to measure the CMR’s puncturing force with a load cell and conducted an experiment in a Y-shaped watery glass tube with pseudo-tissue to verify the crawling motion, the uncovering and covering motion of the biopsy needle, and the CMR’s ability to extract tissue with the biopsy needle.

2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Author(s):  
Jorge Alfonso Tavares-Negrete ◽  
Alberto Emanuel Aceves-Colin ◽  
Delia Cristal Rivera-Flores ◽  
Gladys Guadalupe Díaz-Armas ◽  
Anne-Sophie Mertgen ◽  
...  

2021 ◽  
pp. 0310057X2097665
Author(s):  
Natasha Abeysekera ◽  
Kirsty A Whitmore ◽  
Ashvini Abeysekera ◽  
George Pang ◽  
Kevin B Laupland

Although a wide range of medical applications for three-dimensional printing technology have been recognised, little has been described about its utility in critical care medicine. The aim of this review was to identify three-dimensional printing applications related to critical care practice. A scoping review of the literature was conducted via a systematic search of three databases. A priori specified themes included airway management, procedural support, and simulation and medical education. The search identified 1544 articles, of which 65 were included. Ranging across many applications, most were published since 2016 in non – critical care discipline-specific journals. Most studies related to the application of three-dimensional printed models of simulation and reported good fidelity; however, several studies reported that the models poorly represented human tissue characteristics. Randomised controlled trials found some models were equivalent to commercial airway-related skills trainers. Several studies relating to the use of three-dimensional printing model simulations for spinal and neuraxial procedures reported a high degree of realism, including ultrasonography applications three-dimensional printing technologies. This scoping review identified several novel applications for three-dimensional printing in critical care medicine. Three-dimensional printing technologies have been under-utilised in critical care and provide opportunities for future research.


Sign in / Sign up

Export Citation Format

Share Document