scholarly journals Comparative and Cost Analysis of a Novel Predictive Power Ramp Rate Control Method: A Case Study in a PV Power Plant in Puerto Rico

2021 ◽  
Vol 11 (13) ◽  
pp. 5766
Author(s):  
Juan F. Patarroyo-Montenegro ◽  
Jesus D. Vasquez-Plaza ◽  
Omar F. Rodriguez-Martinez ◽  
Yuly V. Garcia ◽  
Fabio Andrade

One of the most important aspects that need to be addressed to increase solar energy penetration is the power ramp-rate control. In weak grids such as the one found in Puerto Rico, it is important to smooth power fluctuations caused by the intermittence of passing clouds. In this work, a novel power ramp-rate control strategy is proposed. Additionally, a comparison with some of the most common power ramp-rate control methods is performed using a proposed model and real solar radiation data from the Coto Laurel photovoltaic power plant located in Ponce, Puerto Rico. The proposed model was validated using one-year real data from Coto Laurel. The power ramp-rate control methods were compared in real-time simulations using the OP5700 from Opal-RT Technologies considering power ramp rate fluctuations, power ramp-rate violations, fluctuations in the state-of-charge, among other indicators. Moreover, the proposed power ramp-rate control strategy, called predictive dynamic smoothing was explained and compared. Results indicate that the predictive dynamic smoothing produced a considerably reduced Levelized Cost of Storage compared to other power ramp-rate control methods and provided a higher lifetime expectancy for lithium batteries.

2012 ◽  
Vol 468-471 ◽  
pp. 115-121 ◽  
Author(s):  
Wei Min Xu ◽  
Bao Bao Ding ◽  
Rui Geng ◽  
Xian Wen Zhou

With progress making in the art of industrial fields, control methods for synchronized multi-motor systems get more and more extensive applications, and there are increasingly high requirements for synchronous controllers. In this paper, a new control method for multi-axis drive systems is proposed, an adjacent-coupling algorithm based synchronization control strategy is designed, and a CMAC neural network based controller is developed. Simulation results show good performance of synchronization control accuracy, interference immunity, and convergence for the suggested synchronous controller


Solar Energy ◽  
2020 ◽  
Vol 208 ◽  
pp. 1058-1067
Author(s):  
Xingshuo Li ◽  
Huiqing Wen ◽  
Bingqing Chen ◽  
Shuye Ding ◽  
Weidong Xiao

2021 ◽  
Vol 15 (12) ◽  
pp. e0009966
Author(s):  
Liliana Sánchez-González ◽  
Laura E. Adams ◽  
Rafael Saavedra ◽  
Emma M. Little ◽  
Nicole A. Medina ◽  
...  

Arboviral diseases transmitted by Aedes species mosquitoes pose an increasing public health challenge in tropical regions. Wolbachia-mediated population suppression (Wolbachia suppression) is a vector control method used to reduce Aedes mosquito populations by introducing male mosquitoes infected with Wolbachia, a naturally occurring endosymbiotic bacterium. When Wolbachia-infected male mosquitoes mate with female wild mosquitoes, the resulting eggs will not hatch. Public support is vital to the successful implementation and sustainability of vector control interventions. Communities Organized to Prevent Arboviruses (COPA) is a cohort study to determine the incidence of arboviral disease in Ponce, Puerto Rico and evaluate vector control methods. Focus groups were conducted with residents of COPA communities to gather their opinion on vector control methods; during 2018–2019, adult COPA participants were interviewed regarding their views on Wolbachia suppression; and a follow-up questionnaire was conducted among a subset of participants and non-participants residing in COPA communities. We analyzed factors associated with support for this method. Among 1,528 participants in the baseline survey, median age was 37 years and 63% were female. A total of 1,032 (68%) respondents supported Wolbachia suppression. Respondents with an income of $40,000 or more were 1.34 times as likely [95% CI: 1.03, 1.37] to support Wolbachia suppression than those who earned less than $40,000 annually. Respondents who reported repellant use were 1.19 times as likely to support Wolbachia suppression [95% CI: 1.03, 1.37]. A follow-up survey in 2020 showed that most COPA participants (86%) and non-participants living in COPA communities (84%) supported Wolbachia suppression during and after an educational campaign. The most frequent questions regarding this method were related to its impact on human and animal health, and the environment. Continuous community engagement and education efforts before and during the implementation of novel vector control interventions are necessary to increase and maintain community support.


Author(s):  
Zachary J. Dougherty ◽  
Ryder C. Winck

There has been a recent increase in research related to supernumerary robotic arms. A challenge with supernumerary robotic arms is how to operate them effectively. One solution is to use the foot to teleoperate the arm. That frees the person to use their arms for other tasks. However, unlike hand interfaces, it is not known how to create effective foot control for robotic teleoperation. This paper presents an experiment to compare position and rate control methods for foot interfaces. A foot interface is presented that can be used for both position and rate control. A human subject experiment uses 2D positioning tasks to evaluate the effectiveness of each control method. These same tasks are tested with a hand interface to provide a baseline for comparison. Results show that, similar to the hand, position control performs faster than rate control when using the foot.


SIMULATION ◽  
2019 ◽  
Vol 96 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Esmaeil Jalalabadi ◽  
Mohammad Reza Salehizadeh ◽  
Ashkan Rahimi kian

In this paper, a detailed mathematical optimization model of electrolyzer/fuel cell technology connected to the grid through limited rating converters is developed. The model is so defined that it can tackle voltage fluctuation and meet the power ramp rate limitations inflicted by integration of constant-speed wind turbines at the Point of Common Coupling. The flicker mitigation and power ramp rate control problem in the presence of wind generation and variable electrical loads is defined as a nonlinear constrained optimization problem, in which voltage fluctuation is minimized as the objective function and the power ramp rate limitations are respected by the defined real-time ramp rate constraint. The problem is solved using the sequential quadratic programming method, which is a fast solver, by adjusting suitable initial points to be appropriate for real-time applications. The simulation results validate the efficiency of the proposed method and show dramatic improvement in flicker mitigation, power ramp rate control, and system rating reduction in comparison with the proportional–integral control method that was developed in previous studies.


Author(s):  
Mina Haghighat ◽  
Mehdi Niroomand ◽  
Hossein Dehghani Tafti

Sign in / Sign up

Export Citation Format

Share Document