scholarly journals Compliant Human–Robot Collaboration with Accurate Path-Tracking Ability for a Robot Manipulator

2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.

2020 ◽  
Vol 10 (15) ◽  
pp. 5287
Author(s):  
Yuanhui Wang ◽  
Haiyan Tong ◽  
Hongliang Ren

In this brief, the path following control problem of underactuated hovercrafts subject to nonlinear time-varying uncertainties and a safety limit constraint (SLC) is addressed. A novel homogenous nonlinear extended state observer (NESO)-based safe motion controller for a path following control scenario of underactuated hovercrafts is proposed. First, a NESO is constructed to estimate and compensate the nonlinear time-varying uncertainties for the underactuated hovercraft. Then, a NESO-based backstepping sliding mode control (BSMC) law with a turning SLC is proposed to achieve the yaw control for underactuated hovercrafts, which improves both safety and maneuverability of the underactuated hovercraft during the path following control scenario. The nonlinear time-varying turning SLC is first directly taken into the control system design, which is achieved by introducing an auxiliary dynamic system to limit the virtual input control during the backstepping design process. A NESO-based backstepping surge control law is also designed to achieve the surge control for underactuated hovercrafts. Furthermore, all error signals of the proposed closed-loop control system are proven to be bounded. Finally, an application case is tested on an underactuated hovercraft to illustrate the effectiveness and superiority of the designed control scheme.


2020 ◽  
Vol 10 (1) ◽  
pp. 396-407
Author(s):  
Fatiha Loucif ◽  
Sihem Kechida

AbstractIn this paper, a sliding mode controller (SMC) with PID surface is designed for the trajectory tracking control of a robot manipulator using different optimization algorithms such as, Antlion Optimization Algorithm (ALO) Sine Cosine Algorithm (SCA) Grey Wolf Optimizer (GWO) and Whale Optimizer Algorithm (WOA). The aim of this work is to introduce a novel SMC-PID-ALO to control nonlinear systems, especially the position of two of the joints of a 2DOF robot manipulator. The basic idea is to determinate four optimal parameters (Kp, Ki, Kd and lamda) ensuring the best performance of a robot manipulator system, minimizing the integral time absolute error criterion (ITAE) and the integral time square error criterion (ISTE). The robot manipulator is modeled in Simulink and the control is implemented using the MATLAB environment. The obtained simulation results prove the robustness of ALO in comparison with other algorithms.


Sign in / Sign up

Export Citation Format

Share Document