scholarly journals A Novel Approach of Unit Conversion in the Lattice Boltzmann Method

2021 ◽  
Vol 11 (14) ◽  
pp. 6386
Author(s):  
Saleh S. Baakeem ◽  
Saleh A. Bawazeer ◽  
Abdulmajeed. A. Mohamad

The lattice Boltzmann method (LBM) is an alternative method to the conventional computational fluid dynamic (CFD) methods. It gained popularity due to its simplicity in coding and dealing with a complex fluid flow such as the multiphase flow. The method is based on the kinetic theory, which is mesoscopic scale. Hence, applying the LBM method for macroscopic problems requires a proper conversion from the physical scale (conventional units) to the mesoscopic scale (lattice units) and vice versa. The Buckingham π theorem and the principle of corresponding states are the popular methods used for data reductions and unit conversion processes in the LBM. Nevertheless, those methods have some issues, such as difficulty in converting specific quantities, such as thermo-physical properties. The current work uses a novel dimensional analysis method systematically for mapping properties’ units between scales. Moreover, the approach has the flexibility in selecting parameters to ensure the stability of the method of solution. Several benchmark examples are used to evaluate the feasibility and accuracy of the proposed approach. In conclusion, the proposed approach showed the flexibility of the mapping between meso-scale to macro-scales and vice versa on solid bases rather than ad-hoc methods.

Author(s):  
Iñaki Zabala ◽  
Jesús M. Blanco

The lattice Boltzmann method (LBM) is a novel approach for simulating convection-diffusion problems. It can be easily parallelized and hence can be used to simulate fluid flow in multi-core computers using parallel computing. LES (large eddy simulation) is widely used in simulating turbulent flows because of its lower computational needs compared to others such as direct numerical simulation (DNS), where the Kolmogorov scales need to be solved. The aim of this chapter consists of introducing the reader to the treatment of turbulence in fluid dynamics through an LES approach applied to LBM. This allows increasing the robustness of LBM with lower computational costs without increasing the mesh density in a prohibitive way. It is applied to a standard D2Q9 structure using a unified formulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Xinhua Liu ◽  
Hao Liu ◽  
Yongzhi Liu

In order to study the rheological characteristics of magnetorheological fluids, a novel approach based on the two-component Lattice Boltzmann method with double meshes was proposed, and the micro-scale structures of magnetorheological fluids in different strength magnetic fields were simulated. The framework composed of three steps for the simulation of magnetorheological fluids was addressed, and the double meshes method was elaborated. Moreover, the various internal and external forces acting on the magnetic particles were analyzed and calculated. The two-component Lattice Boltzmann model was set up, and the flowchart for the simulation of magnetorheological fluids based on the two-component Lattice Boltzmann method with double meshes was designed. Finally, a physics experiment was carried out, and the simulation examples were provided. The comparison results indicated that the proposed approach was feasible, efficient, and outperforming others.


Sign in / Sign up

Export Citation Format

Share Document