scholarly journals Development of a Steel Plant Rescheduling Algorithm Based on Batch Decisions

2021 ◽  
Vol 11 (15) ◽  
pp. 6765
Author(s):  
David García-Menéndez ◽  
Henar Morán-Palacios ◽  
Eliseo P. Vergara-González ◽  
Vicente Rodríguez-Montequín

During the steelmaking and continuous casting process in the steel plant, it is common to encounter delays that affect initial planning. Furthermore, continuous casting machines themselves can lose much of their performance in the event of closure of one or more of their casting strands. The situation that is generated, far from being a planning problem, forces consideration of a vision of cost analysis when deciding changes in the planned sequences. This study presents a detailed analysis of the different circumstances that can cause strands closures or sequence breaks, their consequences and the different options available to minimize losses. Finally, an algorithm capable of analyzing the workshop situation and making the most favorable decision to optimize production is proposed, analyzed and compared with the efficiency of the original scheduling method in a real steel plant. The new algorithm proves its efficiency in all situations, with a time-saving average of 26.41 min per decision taken.

2012 ◽  
Vol 161 ◽  
pp. 37-41
Author(s):  
Fu Ming Zhang

The technology for clean steel production in modern steel plant is analyzed, a philosophy with production efficiency, manufacturing cost and product performance in its core. A review on functions is also made which of high-efficiency, low-cost and high-quality steel products manufactured by the new generation iron and steel plant, in combination with the study on design of steelmaking – continuous casting process of Shougang Jingtang iron and steel plant. By applying precise and dynamic design system to optimize and allocate systems and working procedures of hot metal pretreatment, converter smelting, secondary refining, continuous casting process, etc, a platform of high-efficiency, low-cost and high-quality clean steel production is built.


1973 ◽  
Vol 59 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Kichinosuke MATSUNAGA ◽  
Chikakazu NAMIKI ◽  
Taiji ARAKI

2021 ◽  
Vol 13 (11) ◽  
pp. 5957
Author(s):  
Tomas Mauder ◽  
Michal Brezina

Production of overall CO2 emissions has exhibited a significant reduction in almost every industry in the last decades. The steelmaking industry is still one of the most significant producers of CO2 emissions worldwide. The processes and facilities used at steel plants, such as the blast furnace and the electric arc furnace, generate a large amount of waste heat, which can be recovered and meaningfully used. Another way to reduce CO2 emissions is to reduce the number of low-quality steel products which, due to poor final quality, need to be scrapped. Steel product quality is strongly dependent on the continuous casting process where the molten steel is converted into solid semifinished products such as slabs, blooms, or billets. It was observed that the crack formation can be affected by the water cooling temperature used for spray cooling which varies during the year. Therefore, a proper determination of the cooling water temperature can prevent the occurrence of steel defects. The main idea is based on the utilization of the waste heat inside the steel plant for preheating the cooling water used for spray cooling in the Continuous Casting (CC) process in terms of water temperature stabilization. This approach can improve the quality of steel and contribute to the reduction of greenhouse gas emissions. The results show that, in the case of billet casting, a reduction in the cooling water consumption can be also reached. The presented tools for achieving these goals are based on laboratory experiments and on advanced numerical simulations of the casting process.


2011 ◽  
Vol 295-297 ◽  
pp. 1284-1288 ◽  
Author(s):  
De Wei Li ◽  
Zhi Jian Su ◽  
Li Wei Sun ◽  
Katsukiyo Marukawa ◽  
Ji Cheng He

Swirling flow in an immersion nozzle is effective on improving quality of casting block and casting speed in continuous casting process of steel. However, a refractory swirl blade installed in the nozzle is liable to cause clogging, which limit the application of the process. In this study a new process is proposed, that is a rotating electromagnetic field is set up around an immersion nozzle to induce a swirling flow in it by Lorentz force. New types of swirling flow electromagnetic generator are proposed and the effects of the structure of the generator, the coil current intensity and frequency on the magnetic field and on the flow field in the immersion nozzle are numerically analyzed.


2012 ◽  
Vol 535-537 ◽  
pp. 633-638 ◽  
Author(s):  
Zheng Hai Zhu ◽  
Sheng Tao Qiu

It was analyzed by strain-induced precipitation model that Nb(C,N) precipitation in micro alloy steel slab was effected by strain rate during continuous casting process. The results are as follows: The changing of casting speed could effect the time for 5%precipitation of Nb(C,N), which was decreasing with increasing casting speed at certain temperature and strain rate. Slab strain and strain rate were too small in bending zone and leveling zone. The effect of slab strain rate on Nb(C,N) precipitation could be ignore when Nb(C,N) precipitation in continuous casting process was studied.


Sign in / Sign up

Export Citation Format

Share Document