scholarly journals An Accelerated Slicing Algorithm for Frep Models

2021 ◽  
Vol 11 (15) ◽  
pp. 6767
Author(s):  
Evgenii Maltsev ◽  
Dmitry Popov ◽  
Svyatoslav Chugunov ◽  
Alexander Pasko ◽  
Iskander Akhatov

Complex 3D objects with microstructures can be modelled using the function representation (FRep) approach and then manufactured. The task of modelling a geometric object with a sophisticated microstructure based on unit cell repetition is often too computationally expensive for CAD systems. FRep provides efficient tools to solve this problem. However, even for FRep the slicing step required for manufacturing can take a significant amount of time. An accelerated slicing algorithm for FRep 3D objects is proposed in this paper. This algorithm allows the preparation of FRep models for 3D printing without surface generation stage. The spatial index is employed to accelerate the slicing process. A novel compound adaptive criterion and a novel acceleration criterion are proposed to speed up the evaluation of the defining function of an FRep object. The use of these criteria is significantly reducing the computational time for contour construction during the slicing process. The k-d tree and R-tree data structures are used as spatial indexes. The performance of the accelerated slicing algorithm was tested. The contouring time was reduced 100-fold due to using the novel compound adaptive criterion with the novel acceleration criterion.

2012 ◽  
Vol 47 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Parthasarathy Madhusudan ◽  
Xiaokang Qiu ◽  
Andrei Stefanescu
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7448
Author(s):  
Chaoyang Huang ◽  
Jianming Peng ◽  
Yanliang Li ◽  
Moke Lian ◽  
Chao Guo ◽  
...  

The target strata of sandstone-type uranium deposits are usually located in the fragile and loose strata, which makes it difficult to obtain core samples; consequently, a novel ice coring device for loose sandstone-type uranium deposits is proposed to solve this problem. Experiments proved that the artificial sample can replace the natural sample, and the coring method has high reliability. Ensuring the allegro formation of an ice valve with a given cold source is critical for this coring system, and reducing the loss of cold energy with help of insulation layer is one of the methods to speed up the formation of ice valve. Since the diameter of the drill tool is limited by its working scenario, the thickness of insulation layer is limited to ensure the size of core. Therefore, this paper conducted laboratory experiments of the insulation layer with different thicknesses to study the effect of the insulation layer on the formation of the sand–ice valve. Results show that the insulation layer can reduce the loss of cold energy during the freezing process and significantly affect the formation time of the sand–ice valve. When the thickness of the aerogel insulation layer is 2 mm, the freezing time is 44% shorter than that without insulation layer. According to the tests, the novel ice coring device is expected to solve the coring problem in loose sandstone-type uranium deposits.


Jurnal INKOM ◽  
2014 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Arnida Lailatul Latifah ◽  
Adi Nurhadiyatna

This paper proposes parallel algorithms for precipitation of flood modelling, especially applied in spatial rainfall distribution. As an important input in flood modelling, spatial distribution of rainfall is always needed as a pre-conditioned model. In this paper two interpolation methods, Inverse distance weighting (IDW) and Ordinary kriging (OK) are discussed. Both are developed in parallel algorithms in order to reduce the computational time. To measure the computation efficiency, the performance of the parallel algorithms are compared to the serial algorithms for both methods. Findings indicate that: (1) the computation time of OK algorithm is up to 23% longer than IDW; (2) the computation time of OK and IDW algorithms is linearly increasing with the number of cells/ points; (3) the computation time of the parallel algorithms for both methods is exponentially decaying with the number of processors. The parallel algorithm of IDW gives a decay factor of 0.52, while OK gives 0.53; (4) The parallel algorithms perform near ideal speed-up.


2011 ◽  
Vol 11 (04) ◽  
pp. 571-587 ◽  
Author(s):  
WILLIAM ROBSON SCHWARTZ ◽  
HELIO PEDRINI

Fractal image compression is one of the most promising techniques for image compression due to advantages such as resolution independence and fast decompression. It exploits the fact that natural scenes present self-similarity to remove redundancy and obtain high compression rates with smaller quality degradation compared to traditional compression methods. The main drawback of fractal compression is its computationally intensive encoding process, due to the need for searching regions with high similarity in the image. Several approaches have been developed to reduce the computational cost to locate similar regions. In this work, we propose a method based on robust feature descriptors to speed up the encoding time. The use of robust features provides more discriminative and representative information for regions of the image. When the regions are better represented, the search for similar parts of the image can be reduced to focus only on the most likely matching candidates, which leads to reduction on the computational time. Our experimental results show that the use of robust feature descriptors reduces the encoding time while keeping high compression rates and reconstruction quality.


2021 ◽  
Author(s):  
Alberto Gerri ◽  
Ahmed Shokry ◽  
Enrico Zio ◽  
Marco Montini

Abstract Hydrates formation in subsea pipelines is one of the main reliability concerns for flow assurance engineers. A fast and reliable assessment of the Cool-Down Time (CDT), the period between a shut-down event and possible hydrates formation in the asset, is of key importance for the safety of operations. Existing methods for the CDT prediction are highly dependent on the use of very complex physics-based models that demand large computational time, which hinders their usage in an online environment. Therefore, this work presents a novel methodology for the development of surrogate models that predict, in a fast and accurate way, the CDT in subsea pipelines after unplanned shutdowns. The proposed methodology is, innovatively, tailored on the basis of reliability perspective, by treating the CDT as a risk index, where a critic CDT threshold (i.e. the minimum time needed by the operator to preserve the line from hydrates formation) is considered to distinguish the simulation outputs into high-risk and low-risk domains. The methodology relies on the development of a hybrid Machine Learning (ML) based model using datasets generated through complex physics-based model’ simulations. The hybrid ML-based model consists of a Support Vector Machine (SVM) classifier that assigns a risk level (high or low) to the measured operating condition of the asset, and two Artificial Neural Networks (ANNs) for predicting the CDT at the high-risk (low CDT) or the low-risk (high CDT) operating conditions previously assigned by the classifier. The effectiveness of the proposed methodology is validated by its application to a case study involving a pipeline in an offshore western African asset, modelled by a transient physics-based commercial software. The results show outperformance of the capabilities of the proposed hybrid ML-based model (i.e., SVM + 2 ANNs) compared to the classical approach (i.e. modelling the entire system with one global ANN) in terms of enhancing the prediction of the CDT during the high-risk conditions of the asset. This behaviour is confirmed applying the novel methodology to training datasets of different size. In fact, the high-risk Normalized Root Mean Square Error (NRMSE) is reduced on average of 15% compared to the NRMSE of a global ANN model. Moreover, it’s shown that high-risk CDT are better predicted by the hybrid model even if the critic CDT, which divides the simulation outputs in high-risk and low-risk values (i.e. the minimum time needed by the operator to preserve the line from hydrates formation), changes. The enhancement, in this case, is on average of 14.6%. Eventually, results show how the novel methodology cuts down by more than one hundred seventy-eight times the computational times for online CDT predictions compared to the physics-based model.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1890 ◽  
Author(s):  
Zijian Hu ◽  
Kaifang Wan ◽  
Xiaoguang Gao ◽  
Yiwei Zhai ◽  
Qianglong Wang

Autonomous motion planning (AMP) of unmanned aerial vehicles (UAVs) is aimed at enabling a UAV to safely fly to the target without human intervention. Recently, several emerging deep reinforcement learning (DRL) methods have been employed to address the AMP problem in some simplified environments, and these methods have yielded good results. This paper proposes a multiple experience pools (MEPs) framework leveraging human expert experiences for DRL to speed up the learning process. Based on the deep deterministic policy gradient (DDPG) algorithm, a MEP–DDPG algorithm was designed using model predictive control and simulated annealing to generate expert experiences. On applying this algorithm to a complex unknown simulation environment constructed based on the parameters of the real UAV, the training experiment results showed that the novel DRL algorithm resulted in a performance improvement exceeding 20% as compared with the state-of-the-art DDPG. The results of the experimental testing indicate that UAVs trained using MEP–DDPG can stably complete a variety of tasks in complex, unknown environments.


2009 ◽  
pp. 440-456 ◽  
Author(s):  
Elvira Locuratolo

This chapter is devoted to the integration of the ASSO features in B. ASSO is a database design methodology defined for achieving conceptual schema consistency, logical schema correctness, flexibility in reflecting the real-life changes on the schema and efficiency in accessing and storing information. B is an industrial formal method for specifying, designing, and coding software systems. Starting from a B specification of the data structures and of the transactions allowed on a database, two model transformations are designed: The resulting model, called Structured Database Schema, integrates static and dynamics exploiting the novel concepts of Class-Machine and Specialized Class-Machine. Formal details which must be specified if the conceptual model of ASSO is directly constructed in B are avoided; the costs of the consistency obligations are minimized. Class-Machines supported by semantic data models can be correctly linked with Class-Machines supported by object Models.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 294-305 ◽  
Author(s):  
S.E.. E. Gorucu ◽  
R.T.. T. Johns

Summary Phase-equilibrium calculations become computationally intensive in compositional simulation as the number of components and phases increases. Reduced methods were developed to address this problem, where the binary-interaction-parameter (BIP) matrix is approximated either by spectral decomposition (SD), as performed by Hendriks and van Bergen (1992), or with the two-parameter BIP formula of Li and Johns (2006). Several authors have recently stated that the SD method—and by reference all reduced methods—is not as fast as previously reported in the literature. In this paper we present the first study that compares all eight reduced and conventional methods published to date by use of optimized code and compilers. The results show that the SD method and its variants are not as fast as other reduced methods, and can be slower than the conventional approach when fewer than 10 components are used. These conclusions confirm the findings of recently published papers. The reason for the slow speed is the requirement that the code must allow for a variable number of eigenvalues. We show that the reduced method of Li and Johns (2006) and its variants, however, are faster because the number of reduced parameters is fixed to six, which is independent of the number of components. Speed up in flash calculations for their formula is achieved for all fluids studied when more than six components are used. For example, for 10-component fluids, a speed up of 2–3 in the computational time for Newton-Raphson (NR) iterations is obtained compared with the conventional method modeled after minimization of Gibbs energy. The reduced method modeled after the linearized approach of Nichita and Graciaa (2011), which uses the two-parameter BIP formula of Li and Johns (2006), is also demonstrated to have a significantly larger radius of convergence than other reduced and conventional methods for five fluids studied.


2011 ◽  
Vol 73 (4) ◽  
pp. 111-126 ◽  
Author(s):  
Anton Bardera ◽  
Imma Boada ◽  
Miquel Feixas ◽  
Jaume Rigau ◽  
Mateu Sbert

Sign in / Sign up

Export Citation Format

Share Document