scholarly journals Development and Validation of a Method for the Semi-Quantitative Determination of N-Nitrosamines in Active Pharmaceutical Ingredient Enalapril Maleate by Means of Derivatisation and Detection by HPLC with Fluorimetric Detector

2021 ◽  
Vol 11 (16) ◽  
pp. 7590
Author(s):  
Dariusz Boczar ◽  
Elżbieta Wyszomirska ◽  
Beata Zabrzewska ◽  
Anna Chyła ◽  
Katarzyna Michalska

A novel HPLC method with fluorimetric detection was developed for the determination of potentially carcinogenic N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) in active pharmaceutical ingredient enalapril maleate. N-nitrosamines were subject to denitrosation followed by derivatisation with dansyl chloride or fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Fmoc-Cl offers much better sensitivity and repeatability than dansyl chloride derivatisation. A satisfactory linearity was obtained for the method, with R2 = 0.9994 for NDMA and 0.9990 for NDEA, and a limit of quantification level of 0.038 μg/g for NDMA and 0.050 μg/g for NDEA. The precision decreased with the concentration to a maximum level of about 10%. The recoveries were in the range of 74.2 ± 4.2% to 101.6 ± 16.1% for NDMA and 90.6 ± 2.9% to 125.4 ± 7.4% for NDEA. Dansyl chloride was found to be an inappropriate derivatisation agent, mainly due to potential contamination with dimethylamine, leading to unrepeatable peaks in the blank solution. Since the method involves the derivatisation of amines liberated from the N-nitrosamines, it was necessary to remove the amines from the test sample. Several critical points in the standard/sample preparation have been mentioned, which affect the reproducibility of the method and are not covered in similar articles.

2010 ◽  
Vol 7 (3) ◽  
pp. 807-812 ◽  
Author(s):  
Vanita Somasekhar ◽  
D. Gowri Sankar

A reverse phase HPLC method is described for the determination of esmolol hydrochloride in bulk and injections. Chromatography was carried on a C18column using a mixture of acetonitrile, 0.05 M sodium acetate buffer and glacial acetic acid (35:65:3 v/v/v) as the mobile phase at a flow rate of 1 mL/min with detection at 275 nm. The retention time of the drug was 4.76 min. The detector response was linear in the concentration of 1-50 μg/mL. The limit of detection and limit of quantification was 0.614 and 1.86 μg/mL respectively. The method was validated by determining its sensitivity, linearity, accuracy and precision. The proposed method is simple, economical, fast, accurate and precise and hence can be applied for routine quality control of esmolol hydrochloride in bulk and injections.


2021 ◽  
pp. 281-294 ◽  
Author(s):  
Abolghasem Beheshti ◽  
Zahra Kamalzadeha ◽  
Monireh Haj-Maleka ◽  
Meghdad Payaba ◽  
Mohammad Amin Rezvanfar ◽  
...  

Due to the new hopes for treatment of multiple sclerosis (MS) diseases by Teriflunomide (TFN), in this project, a cheap, robust, and fully validated method has been developed both for determination of assay content in API (active pharmaceutical ingredient), and for related impurities analysis (RIA). To operate the method, a common C18, end-capped (250 × 4.6) mm, 5µm liquid chromatography column, was applied. The mobile phase A was prepared by dissolving 2.74 g (20mM) of PDP (potassium dihydrogen phosphate) and 3.72 g (50mM) of PC (potassium chloride) in water (1000 mL). Then, pH was adjusted to 3.0 by adding OPA (ortho-phosphoric acid) 85%; while, the mobile phase B was acetonitrile (ACN) (100%). In order to confirm the experimental data about the λmax of TFN, we have used the Born-Oppenheimer molecular dynamics (BOMD) simulations, quantum mechanics (QM), and TD-DFT calculations. According to the results, the method showed a high level of suitability, specificity, linearity, accuracy, precision, repeatability, robustness, and reliable detection limit.


2020 ◽  
Vol 32 (9) ◽  
pp. 2208-2212
Author(s):  
CH. RAMESH ◽  
DHARMASOTH RAMA DEVI DEVI ◽  
M.N.B. SRINIVAS ◽  
S. RADHA KRISHNA ◽  
NAGARAJU RAJANA ◽  
...  

simple, specific, linear, accurate and precise reverse phase chiral HPLC method was developed for the separation of efavirenz enantiomers by using the Lux Amylose-2 column containing amylose tris(5-chloro-2-methyl phenyl carbamate) as a stationary phase. The mobile phase consists of 0.1 % formic acid in water and acetonitrile (55:45, v/v). The flow rate was kept at 1.0 mL/min and the detection wavelength used 252 nm and the column temperature was set at 25 ºC. The limit of detection was 0.01 mg/mL and the limit of quantification was 0.04 mg/mL. The linearity calibration curve of (R)-enantiomer was shown well from the range of 0.04 mg/mL to 0.4 mg/mL. The values of the correlation coefficient were 0.999 and 0.999 for (R)-enantiomer and (S)-efavirenz, respectively. The percentage recoveries of (R)-enantiomer from efavirenz drug substance were ranged from 93.5% to 107.5%. The results demonstrated that developed RP-chiral HPLC method was simple, precise, robust and applicable for the estimation of (R)-enantiomer in efavirenz API. This method was validated in as per ICH Q2 (R1) and USP validation of compendial methods <1225>.


2016 ◽  
Vol 10 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Najmul Hasan ◽  
Mathurot Chaiharn ◽  
Umair Ali Toor ◽  
Zulfiqar Ali Mirani ◽  
Ghulam Sajjad ◽  
...  

In this article we describe development and validation of stability indicating, accurate, specific, precise and simple Ion-pairing RP-HPLC method for simultaneous determination of paracetamol and cetirizine HCl along with preservatives i.e. propylparaben, and methylparaben in pharmaceutical dosage forms of oral solution and in serum. Acetonitrile: Buffer: Sulfuric Acid (45:55:0.3 v/v/v) was the mobile phase at flow rate 1.0 mL min-1 using a Hibar® Lichrosorb® C18 column and monitored at wavelength of 230nm. The averages of absolute and relative recoveries were found to be 99.3%, 99.5%, 99.8% and 98.7% with correlation coefficient of 0.9977, 0.9998, 0.9984, and 0.9997 for cetirizine HCl, paracetamol, methylparaben and Propylparaben respectively. The limit of quantification and limit of detection were in range of 0.3 to 2.7 ng mL-1 and 0.1 to 0.8 ng mL-1 respectively. Under stress conditions of acidic, basic, oxidative, and thermal degradation, maximum degradation was observed in basic and oxidative stress where a significant impact was observed while all drugs were found almost stable in the other conditions. The developed method was validated in accordance with ICH and AOAC guidelines. The proposed method was successfully applied to quantify amount of paracetamol, cetirizine HCl and two most common microbial preservatives in bulk, dosage form and physiological fluid.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (07) ◽  
pp. 54-57
Author(s):  
P. Sathyanarayana ◽  
◽  
M Vijayalakshmi ◽  
B. N. V Ravi Kumar

A RP-HPLC method was developed and validated for the determination of ramosetron hydrochloride in pharmaceutical formulation as per ICH and FDA guidelines. The method was carried out on a Phenomenex RP-C18 column using a mixture of methanol and water (95:5) in an isocratic mode. The flow rate is 0.8 mL/min and the detection was done at 302 nm. The linearity range was observed in the range of 1-6 mcg/mL. The accuracy of the method was found to be 99.0 to 99.5% and %RSD was found to be less than 2% indicating high degree of accuracy and precision for the proposed HPLC method. Limit of detection and limit of quantification of the method were found to be 0.028 and 0.0851 mcg/mL respectively.


2017 ◽  
Vol 9 (6) ◽  
pp. 54 ◽  
Author(s):  
Yuliya Kondratova ◽  
Liliya Logoyda ◽  
Yuliia Voloshko ◽  
Ahmed Abdel Megied ◽  
Dmytro Korobko ◽  
...  

Objective: A rapid, simple and sensitive RP-HPLC method was developed and validated for the determination of bisoprolol fumarate in bulk and pharmaceutical dosage form.Methods: Chromatographic separation was achieved within 2.5 min on ACQUITY Arc System, Waters Symmetry C18 column (3.9 mm i.d. X 150 mm, 5 μm particle sizes) using a mobile phase consisted of acetonitrile: phosphate buffer (25:75 v/v) in an isocratic mode at a flow rate of 1.4 ml/min. The pH of the mobile phase was adjusted to 7.0 with orthophosphoric acid and UV detection was set at 226 nm.Results: The retention time for bisoprolol fumarate was found to be 2.09 min. The proposed method was validated according to ICH guidelines with respect to linearity, specificity precision, accuracy and robustness. The limit of detection and limit of quantification are calculated and found to be 0.4825 and 1.4621 μg/ml; respectively.Conclusion: The proposed method can help research studies, quality control and routine analysis with lesser resources available. The results of the assay of pharmaceutical formulation of the developed method are highly reliable and reproducible and is in good agreement with the label claim of the medicines.Keywords: Bisoprolol, High-Performance Liquid Chromatography, Validation, ICH guidelines


2021 ◽  
Vol 32 (1) ◽  
pp. 70-75
Author(s):  
Simona Gherman ◽  
Daniela Zavastin ◽  
Adrian Şpac ◽  
Alina Diana Panainte

Abstract For the determination of enalapril maleate in tablets a new, simple and economical HPLC method was developed and fully validated. Chromatographic separation was achieved on Hewlett Zorbax SB-C 18 (150 x 4.6 mm, 5 μm) column and the mobile phase consisted of acetonitrile: 0.025 M phosphate buffer adjusted to pH 3 (70:30 v/v) pumped at a flow rate 0.8 mL/min and UV-detection was performed at 210 nm. The proposed method was validated according to ICH guidelines (linearity, limit of detection, limit of quantification, precision, accuracy, recovery and system suitability). The total run time was less than 3 min and the retention time for Enalapril maleate was 2.3 min. The calibration graph was linear in the concentration range between 10 – 100 μg/mL with the correlation coefficient r2 = 0.9998. The developed and validated method was successfully applied to determine the Enalapril maleate in tablets. Therefore, this method proved to be sensitive, specific and reproducible and can be applied for routine analysis of enalapril maleate from pharmaceutical formulation due to its simplicity of application.


2018 ◽  
Vol 10 (1) ◽  
pp. 98 ◽  
Author(s):  
Liliya Logoyda ◽  
Ahmed M. Abdel-megied ◽  
Yuliya Kondratova ◽  
Olena Trofimenko ◽  
Dmytro Korobko ◽  
...  

Objective: A simple, rapid, economical, and highly sensitive stability-indicating HPLC method was developed and fully validated for determination of enalapril maleate in presence of its related substances namely enalaprilat dihydrate and diketopiperazine.Methods: Chromatographic separation was achieved on Grace Platinumр C8 EPS column (4.6 mm i.d. X 250 mm, 5 μm) at room temperature. The mobile phase consisted of acetonitrile: 20 mmol phosphate buffer adjusted to pH 2.2 (25:75 v/v) isocratically pumped at a flow rate 2 ml/min and UV-detection was monitored at 215 nm.Results: The proposed method was validated according to ICH guidelines with total run time less than 9 min. The correlation coefficient (r2) was noted as 0.99981 which states that the method was good linear to the concentration versus peak area responses. The developed method found to be high sensitivity with LOD and LOQ of 0.021 and 0.062 %; respectively. The developed, validated method was successfully applied for the determination of enalapril maleate in presence of their impurities in tablet dosage form.Conclusion: A rapid, economical, simple and sensitive HPLC method was developed and validated for the determination of enalapril maleate in tablet dosage form in presence of their impurities. The developed method can help research studies, quality control and routine analysis with lesser resources available. Therefore, the proposed validated method is fast and reliable and can be used for routine quantitative analysis as well as quality control of enalapril maleate in pharmaceutical formulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
A. Suneetha ◽  
K. China Venkanna

The present method describes the development of a validated RP-HPLC method for determination of ceftaroline fosamil in presence of its degradation products or other pharmaceutical excipients. The drug substance was subjected to stress conditions of acid, alkali, and oxidative and thermal degradation studies. Separation was carried out on a C-18 X-terra column (Waters Corporation, 250 mm × 4.6 mm I.D.; particle size 5 μm) using 40 : 30 : 30 [buffer : acetonitrile : methanol] as mobile phase at a flow rate of 1.0 ml/min. UV detection was performed at 242 nm. The method was validated with respect to specificity, selectivity, linearity, accuracy, precision, and robustness. The assay method was found to be linear in the range of 40 to 120 μg/mL with a correlation coefficient of 0.9999. The percentage recovery of active pharmaceutical ingredient from parenteral dosage form ranged from 99.5 to 100.2%. The method precision for determination of ceftaroline was below 0.85%. The results showed that the developed RP-HPLC method is suitable for determination of ceftaroline fosamil in bulk as well as stability samples of pharmaceutical dosage forms containing various excipients.


Sign in / Sign up

Export Citation Format

Share Document