scholarly journals Research on Semi-Physical Simulation Testing of Inter-Satellite Laser Interference in the China Taiji Space Gravitational Wave Detection Program

2021 ◽  
Vol 11 (17) ◽  
pp. 7872
Author(s):  
Yikun Wang ◽  
Lingqiang Meng ◽  
Xuesen Xu ◽  
Yu Niu ◽  
Keqi Qi ◽  
...  

To guarantee a smooth in-orbit space gravitational wave detection for the Taiji mission, a semi-physical simulation test of inter-satellite laser interference is carried out. The semi-physical simulation test consists of three aspects: the establishment of the inter-satellite laser link, interferometry of the inter-satellite ranging, and simulation of the space environment. With the designed specifications for the semi-physical simulation platform, the test results for the inter-satellite laser interference can be obtained. Based on the semi-physical simulation test, the risks of inter-satellite laser interference technology can be mitigated, laying a solid foundation for the successful detection of in-orbit gravitational waves.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Min ◽  
Zuo-Lei Wang ◽  
Yun-Peng Li ◽  
Wen-Ze Tao ◽  
Cun-Hui Li ◽  
...  

AbstractTaiji-1, which is the first technical verification satellite of China’s Space Gravitational Wave Detection Program, was successfully launched on August 31, 2019. The mission aimed to investigate the key technologies used in space gravitational wave detection. The inertial sensor, which was one of the main payloads, measured the residual acceleration of the satellite, and verified the drag-free control technology. Its performance was crucial to the success of the Taiji-1 mission. To ensure its performance in orbit, the inertial sensor was fully evaluated prior to launch. Owing to the gravitational acceleration on the ground, it is impossible to verify all the properties of the inertial sensor in a routine laboratory. A feasible method to conduct such tests is to use a drop tower. To guarantee the safety of the inertial sensor, a substitute was used with similar structure and circuit design. A total of 20 falls in three groups were completed, a set of research methods was established, and the importance of conducting simulations before the drop tests was verified. For the first time, the switch of different circuit gains in a drop tower test has been achieved and the National Microgravity Laboratory of China (NMLC) drop tower’s residual accelerations in three dimensions were measured. The results demonstrated that the microgravity level of the drop tower can reach about 58 μg0 in the fall direction and 13 μg0 along the horizontal axes.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2003 ◽  
Vol 42 (7) ◽  
pp. 1257 ◽  
Author(s):  
Guido Müller ◽  
Tom Delker ◽  
David B. Tanner ◽  
David Reitze

Sign in / Sign up

Export Citation Format

Share Document