scholarly journals The Influence of Discrete Fibers on Mechanical Responses of Reinforced Sand in Direct Shear Tests

2021 ◽  
Vol 11 (19) ◽  
pp. 8845
Author(s):  
Chidochashe Clemency Nhema ◽  
Han Ke ◽  
Pengcheng Ma ◽  
Yunmin Chen ◽  
Shiyu Zhao

To investigate the influences of discrete fiber strips on the mechanical properties of reinforced sand, a series of direct shear tests were conducted. A method to strictly control the initial orientation of fiber strips in specimen preparation was developed. Under the same normal pressure, the peak strength of sand specimens was proportional to the fiber content and was inversely proportional to the fiber initial orientation angle. The influences of initial fiber orientation on peak strength may depend on the stress mobilization in fibers. When the fiber strips distributed at a certain orientation angle were subjected to tensile stress in shearing, they could play an effective role in the peak strength gain of sand and vice versa. Due to the restriction of fibers on the volume dilation of sand specimens, the residual strength of reinforced sand also increased. However, the initial stiffness of reinforced sand was smaller than that of pure sand, which may be related to the precompression of flexible fiber strips and the density inhomogeneity of specimens induced in the specimen preparation process. In addition, the ductility of sand specimens was improved by the introduction of fiber strips, intuitively reflected by the increase in displacement failure. This may also be attributed to the restriction of fiber strips on the deformation of sand specimens.

2017 ◽  
Vol 45 (6) ◽  
pp. 674-687 ◽  
Author(s):  
Gary John Fowmes ◽  
Neil Dixon ◽  
Liwei Fu ◽  
Catalin Alexandru Zaharescu

2000 ◽  
Vol 40 (4) ◽  
pp. 1-17 ◽  
Author(s):  
Jin-Ying Qiu ◽  
Fumio Tatsuoka ◽  
Taro Uchimura

Géotechnique ◽  
1987 ◽  
Vol 37 (1) ◽  
pp. 53-68 ◽  
Author(s):  
R. A. Jewell ◽  
C. P. Wroth

2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


2009 ◽  
Author(s):  
Andrés D. Orlando ◽  
Daniel M. Hanes ◽  
Hayley H. Shen ◽  
Masami Nakagawa ◽  
Stefan Luding

Sign in / Sign up

Export Citation Format

Share Document