scholarly journals A Novel Method for Performance Measurement of Public Educational Institutions Using Machine Learning Models

2021 ◽  
Vol 11 (19) ◽  
pp. 9296
Author(s):  
Talha Mahboob Alam ◽  
Mubbashar Mushtaq ◽  
Kamran Shaukat ◽  
Ibrahim A. Hameed ◽  
Muhammad Umer Sarwar ◽  
...  

Lack of education is a major concern in underdeveloped countries because it leads to poor human and economic development. The level of education in public institutions varies across all regions around the globe. Current disparities in access to education worldwide are mostly due to systemic regional differences and the distribution of resources. Previous research focused on evaluating students’ academic performance, but less has been done to measure the performance of educational institutions. Key performance indicators for the evaluation of institutional performance differ from student performance indicators. There is a dire need to evaluate educational institutions’ performance based on their disparities and academic results on a large scale. This study proposes a model to measure institutional performance based on key performance indicators through data mining techniques. Various feature selection methods were used to extract the key performance indicators. Several machine learning models, namely, J48 decision tree, support vector machines, random forest, rotation forest, and artificial neural networks were employed to build an efficient model. The results of the study were based on different factors, i.e., the number of schools in a specific region, teachers, school locations, enrolment, and availability of necessary facilities that contribute to school performance. It was also observed that urban regions performed well compared to rural regions due to the improved availability of educational facilities and resources. The results showed that artificial neural networks outperformed other models and achieved an accuracy of 82.9% when the relief-F based feature selection method was used. This study will help support efforts in governance for performance monitoring, policy formulation, target-setting, evaluation, and reform to address the issues and challenges in education worldwide.

2011 ◽  
pp. 81-104 ◽  
Author(s):  
G. Camps-Valls ◽  
J. F. Guerrero-Martinez

In this chapter, we review the vast field of application of artificial neural networks in cardiac pathology discrimination based on electrocardiographic signals. We discuss advantages and drawbacks of neural and adaptive systems in cardiovascular medicine and catch a glimpse of forthcoming developments in machine learning models for the real clinical environment. Some problems are identified in the learning tasks of beat detection, feature selection/extraction, and classification, and some proposals and suggestions are given to alleviate the problems of interpretability, overfitting, and adaptation. These have become important problems in recent years and will surely constitute the basis of some investigations in the immediate future.


2021 ◽  
Author(s):  
Larissa Asito ◽  
Hélcio Pereira ◽  
Marcello Nogueira-Barbosa ◽  
Renato Tinós

We propose a computer-aided diagnosis system based on convolutional neural networks (CNNs) for the identification of osteosarcoma on bone radiographs. The CNN should indicate regions of the image that may contain tumors. In order to indicate these regions on the image, we propose to split the image in windows and individually classify them by using a CNN. Techniques for pre-processing, such as window exclusion and labeling, are proposed. Two CNNs are compared in the proposed system. The first one is trained from scratch, while the second one is a pre-trained CNN (VGG16). The CNNs are compared to four machine learning models that use features extracted from the image windows as inputs: multilayer perceptron (MLP), decision tree, random forest, and MLP with feature selection. In the experiments, the best performance was obtained by the pre-trained CNN.


2020 ◽  
Author(s):  
Sara Santamaria Aguilar ◽  
Thomas Wahl

<p>Future changes in the wind wave climate due to atmospheric changes can intensify present erosion and flood risk. Knowledge on both mean and extreme wave climate is necessary for understanding changes in sediment dynamics and flood events at the coastline. In order to assess potential wave changes, ensemble nearshore wave projections are required for covering   the entire range of wave conditions and also the large uncertainties related to future climate states. However, nearshore wave projections are not available for most coastal regions due to the excessive computational effort required for dynamically downscaling ensemble offshore wave data. As a result, the large relative contribution of waves to coastal flooding and erosion is commonly omitted in the assessment of those hazards. In this context, machine learning models can be an efficient tool for downscaling ensemble global wave projections if they are able to accurately simulate the non-linear processes of wave propagation due to their low computational requirements. Here, we analyse the performance of three machine learning methods, namely random forest, multivariate adaptive regression splines and artificial neural networks, for downscaling the wave climate along the coast of Florida. We further compare the performance of these three models to the multiple linear regression, which is a statistical model frequently used, although it does not account for the non-linearities associated with wave propagation processes. We find that the three machine learning models perform better than the multiple linear regression for all wave parameters (significant wave height, peak and mean periods, direction) along the entire coastline of Florida, which highlights the ability of these models to reproduce the non-linear wave propagation processes. Specifically, random forest shows the best performance and the lowest computational training times. In addition, this model shows a remarkably good performance in simulating the wave extreme events compared to the other models. By following a tree bagging approach, random forest can also provide confidence intervals and reduce the tuning process. The latter is one of the main disadvantages of the artificial neural networks, which also show a high performance for wave downscaling but require more training and tuning effort. Although the significant wave height and the periods can be simulated with very high accuracy (R<sup>2</sup> higher than 0.9 and 0.8 respectively), the wave direction is poorly simulated by all models due to its circular behaviour. We find that a transformation of the direction into sine and cosine can improve the model performance. Finally, we downscale an ensemble of global wave projections along the coast of Florida and assess potential changes in the wave climate of this region.   </p>


Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different machine learning models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to predict the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best machine model was checked in two independent stations. The results obtained confirmed that the best ML methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 122.6·10kJ/(m2∙day) and 113.6·10kJ/(m2∙day), respectively, and predict conveniently for independent stations, 201.3·10kJ/(m2∙day) and 209.4·10kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


2021 ◽  
Author(s):  
Victor Fung ◽  
Jiaxin Zhang ◽  
Eric Juarez ◽  
Bobby Sumpter

Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems ranging from crystal stability to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, a consistent benchmark of these models remains lacking, hindering the development and consistent evaluation of new models in the materials field. Here, we present a workflow and testing platform, MatDeepLearn, for quickly and reproducibly assessing and comparing GNNs and other machine learning models. We use this platform to optimize and evaluate a selection of top performing GNNs on several representative datasets in computational materials chemistry. From our investigations we note the importance of hyperparameter selection and find roughly similar performances for the top models once optimized. We identify several strengths in GNNs over conventional models in cases with compositionally diverse datasets and in its overall flexibility with respect to inputs, due to learned rather than defined representations. Meanwhile several weaknesses of GNNs are also observed including high data requirements, and suggestions for further improvement for applications in materials chemistry are proposed.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Sign in / Sign up

Export Citation Format

Share Document