scholarly journals Impact of Dredged Material Disposal on Heavy Metal Concentrations and Benthic Communities in Huangmao Island Marine Dumping Area near Pearl River Estuary

2021 ◽  
Vol 11 (20) ◽  
pp. 9412
Author(s):  
Wei Tao ◽  
Zhongchen Jiang ◽  
Xiaojuan Peng ◽  
Zhenxiong Yang ◽  
Weixu Cai ◽  
...  

The Huangmao Island dumping area is adjacent to the Pearl River Estuary in the South China Sea. From its first dumping activity in 1986 to 2017, 6750 × 104 m3 dredged materials were dumped in this dumping area. Sediment pollution levels, ecological risk, and benthic communities in 2011–2017 were evaluated; the results showed that the concentrations of the heavy metals (HMs; except Hg) in surface sediments of the dumping area met the class I standard of marine sediment quality (GB 18668-2002). HMs in the surface sediments were relatively high in the northern and central areas but relatively low in the south of the dumping area. Speculation was that the spatial variation in HM concentrations might be caused by dumping activities. The Nemerow index implied that the contaminated area was mainly in the north of the dumping area (S1, S2, and S3), where the dumping amount was the largest. The potential ecological risk (Eir) indices of Zn, As, Cu, and Pb indicate that these metals posed a low risk to the ecosystem of the dumping area, whereas Cd and Hg posed a high risk at some stations. The geoaccumulation indices (Igeo) of Zn, As, Cu, and Pb specified no pollution or light pollution in the study area, whereas those of Cd and Hg in most years indicated mild contamination levels. Benthic organisms in the study area were arthropods, chordates, annelids, mollusks, echinoderms, nemertinean, coelenterate, and echiuran, among which arthropods were the most abundant. The abundance of taxa and density of benthic organisms had a little difference among the stations within the dumping area, but were significantly lower than those of the stations outside the dumping area. In addition, non-metric multidimensional scaling analysis confirmed that the observed patterns separated the stations within the dumping area from stations outside the dumping area. The evaluation results of the HMs revealed that the dumping area with a large dumping amount was more severely polluted. Dumping dredged materials seemed to have a negative impact on the benthic community in the dumping area.

2010 ◽  
Vol 7 (2) ◽  
pp. 2889-2926 ◽  
Author(s):  
B. He ◽  
M. Dai ◽  
W. Huang ◽  
Q. Liu ◽  
H. Chen ◽  
...  

Abstract. Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N), stable carbon isotopic (δ 13C) composition, as well as molecular-level analyses. Total organic carbon (TOC) content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose) yielded between 4.0 and 18.6 mg (100 mg OC)−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 57±13% for Lingdingyang Bay, 19±2% for the inner shelf, which decreased further to 4.3±0.5% on the outer shelf. The molecular composition of the carbohydrate in surface sediments also suggested that the inner estuary was rich in terrestrial-derived carbohydrates but that the contribution of terrestrial-derived carbohydrates decreased offshore. Terrestrial organic carbon accumulation flux was estimated as 1.37±0.92×1011 g yr−1 in Lingdingyang Bay, which accounted for 37±25% of the terrestrial organic carbon transported to the Bay. The burial efficiency of terrestrial organic matter was markedly lower than that of suspended particulate substance (~71%) suggesting that the riverine POC undergoes significant degradation and replacement during transportation through the estuary.


2014 ◽  
Vol 70 (10) ◽  
pp. 1648-1655 ◽  
Author(s):  
Qiuying Chen ◽  
KinChung Ho ◽  
Jingling Liu

It is essential to evaluate the ecological risk for the estuary cities area for the environmental restoration of the estuary. The ecological risk of six city areas from the Pearl River Estuary were evaluated by using the relative risk model. The relative risk assessment method was developed by considering the river network density in the sub-region. The results indicated that Dongguan had the largest ecological risk pressure with total risk scores as high as 10,846.3, and Hong Kong had the lowest ecological risk pressure with total risk scores up to 4,104.6. The greatest source was domestic sewage with total risk scores as high as 1,798.6, followed by urbanization and industry. Oxygen-consuming organic pollutants, organic toxic pollutants and nutrients were the major stressors of the water environment. In terms of habitats, the water environment was enduring the greatest pressure. For the endpoints, water deterioration faced the largest risk pressure.


Sign in / Sign up

Export Citation Format

Share Document