scholarly journals Microstructure and Wear Behavior of TiC/AISI 1020 Metal Matrix Composites Produced by Liquid Pressing Infiltration

2021 ◽  
Vol 11 (20) ◽  
pp. 9682
Author(s):  
Heejeong Kim ◽  
Jungyu Park ◽  
Sangmin Shin ◽  
Seungchan Cho ◽  
Junghwan Kim ◽  
...  

A metal matrix composite was developed through a unique liquid pressing infiltration process to study the wear mechanism of a TiC reinforced AISI 1020 steel matrix. The microstructure, hardness, and wear behaviors of the TiC/AISI 1020 composite were compared with commercial AISI 52100 bearing steel. Microstructural analysis showed that there were no defects, such as pores or agglomeration of reinforcement particles, and about 60% of the volume of TiC was uniformly dispersed. In the case of the AISI 52100 alloy, the hardness was 62.42 HRC, which was similar to the 62.84 HRC value of the as-cast TiC/AISI 1020 composite. After the quenching heat treatment, the Rockwell hardness of the composite increased to 76.64 HRC, which was attributed to the martensitic transformation of the AISI 1020 matrix. As a result of the pin-on-disc wear test with high contact pressure, the wear width of AISI 52100 was 2937 μm, which was approximately 4.3 times wider than that of the heat-treated metal matrix composite (682 μm). The wear depths of AISI 52100 and the heat-treated composite were 2.6 μm and 0.5 μm, respectively, indicating that TiC/AISI 1020 exhibited excellent wear resistance compared with bearing steel. Improved wear resistance of the TiC/AISI 1020 composite originates from uniformly distributed TiC, with an increase in the hardness due to the heat treatment.

2018 ◽  
Vol 7 (3.6) ◽  
pp. 101 ◽  
Author(s):  
G Jims John Wessley ◽  
A Gaith Franklin ◽  
S J. Vijay

This paper presents the development and characterization of aluminium alloy 6063 based metal matrix composite with varying combinations of fly ash and Borosilicate reinforcements.  In the present work, the aluminium alloy 6063 (AA) is taken at a constant 84 vol% while the reinforcements Fly Ash (FA) and Borosilicate (B) are varied in the proportions of 2%, 4% 8%, 125 and 14%. Six samples were fabricated by stir casting and the mechanical properties were analyzed using tensile test, hardness test and wear test while the microstructure is analyzed by obtaining SEM and EDX images of the specimen. It is seen that both the reinforcements used in this study, increased the tensile and wear resistance of the alloy. The desirable mechanical and micro structural properties were found to be in the specimen with 84% AA, 14% FA and 2% B. The tensile strength of the aluminum alloy at this desirable combination is found to increase by 11.97%, ductility by 36.75% and the wear resistance by 62%.  This metal matrix composite of AA6063 with fly ash and Borosilicate reinforcements can be used in automobile, aerospace and structural applications where wear resistance and tensile properties are mainly required.


2018 ◽  
Vol 204 ◽  
pp. 05020
Author(s):  
Aminnudin Aminnudin ◽  
Moch. Agus Choiron

Metal matrix composite (MMC) is a combination of two or more materials using metal as a matrix. In this paper we used brass as the matrix and fly ash as for the particle. The fly ash used is fly ash which is produced from coal combustion in the Paiton power plant. Fly ash composition in the MMC are 5% and 10%. The MMC was produced with gas furnace. Heat tratment to MMC was done at 350 and 400 °C.Hard testing process, tensile test and impack test are carried out at MMC before heat treatment and after heat treatment. From the test results showed an increase in hardness, tensile strength and impact test showed the heat treatment process at a temperature of 350 °C. Heat treatment at a temperature of 400 °C does not improve the mechanical properties of MMC


2019 ◽  
Vol 895 ◽  
pp. 96-101 ◽  
Author(s):  
B.N. Sharath ◽  
K.S. Madhu ◽  
C.V. Venkatesh

In the present scenario aluminium is an useful metal due its admirable properties such as light weight, low cost and excellent thermal conductivity.In order to take advantages of these properties aluminium is being used to make the metal matrix composites for tribological application, In this present investigation effort has been made to assess the wear properties of Al–B4C–Gr metal matrix composite at various temperatures such as 323° K, 373° K and 423° K. Al–B4C–Gr Hybrid metal matrix composites were fabricated by stir casting technique. The influence of parameters like load, speed, distance and temperature on the wear rate was investigated. A plan of experiments, based on Taguchi model with L27 orthogonal array and analysis of variance was employed to investigate the influence of process parameters on the wear behaviour of these hybrid metal matrix composites. The wear resistance increased with increasing temperature, but wear resistance decreased at higher loads. It was observed that the abrasive wear is dominates while sliding as observed by SEM analysis of worn out specimens.


2014 ◽  
Vol 541-542 ◽  
pp. 263-267
Author(s):  
S. Baskaran ◽  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
R. Venkatraman ◽  
Muthukannan Durai Selvam

The AA7075-4%TiC metal matrix composite produced through in-situ casting technique was hot extruded and subjected to annealing at 415°C for 150 minutes. Another set of hot extruded AA7075-4%TiC metal matrix composite was heat treated to T6 condition. Dry sliding wear test was conducted with different sliding speeds and loads for both annealed and T6 conditioned composites to compare their wear behaviour. It was observed that irrespective of the heat treatment conditions, the depth of wear, decreases with increasing sliding velocity for all the loads tested and increases with increasing load for all the sliding velocities.


Sign in / Sign up

Export Citation Format

Share Document