scholarly journals Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network

2021 ◽  
Vol 11 (21) ◽  
pp. 9947
Author(s):  
Amjad Rehman ◽  
Khalid Haseeb ◽  
Suliman Mohamed Fati ◽  
Jaime Lloret ◽  
Lourdes Peñalver

Nowadays, the Internet of Things (IoT) performs robust services for real-time applications in monitoring communication systems and generating meaningful information. The ZigBee devices offer low latency and manageable costs for wireless communication and support the process of physical data collection. Some biosensing systems comprise IoT-based ZigBee devices to monitor patient healthcare attributes and alert healthcare professionals for needed action. However, most of them still face unstable and frequent data interruption issues due to transmission service intrusions. Moreover, the medical data is publicly available using cloud services, and communicated through the smart devices to specialists for evaluation and disease diagnosis. Therefore, the applicable security analysis is another key factor for any medical system. This work proposed an approach for reliable network supervision with the internet of secured medical things using ZigBee networks for a smart healthcare system (RNM-SC). It aims to improve data systems with manageable congestion through load-balanced devices. Moreover, it also increases security performance in the presence of anomalies and offers data routing using the bidirectional heuristics technique. In addition, it deals with more realistic algorithm to associate only authorized devices and avoid the chances of compromising data. In the end, the communication between cloud and network applications is also protected from hostile actions, and only certified end-users can access the data. The proposed approach was tested and analyzed in Network Simulator (NS-3), and, compared to existing solutions, demonstrated significant and reliable performance improvements in terms of network throughput by 12%, energy consumption by 17%, packet drop ratio by 37%, end-to-end delay by 18%, routing complexity by 37%, and tampered packets by 37%.

2019 ◽  
Vol 7 (2) ◽  
pp. 21-40 ◽  
Author(s):  
Parthasarathy Panchatcharam ◽  
Vivekanandan S.

Wellbeing is fundament requirement. What's more, it is human appropriate to get quality health care. These days, India is confronting numerous medical problems in light of fewer assets. This survey article displays the idea of solving health issues by utilizing a recent innovation, the Internet of Things (IOT). The Internet of Things with their developing interdisciplinary applications has changed our lives. Smart health care being one such IoT application interfaces brilliant gadgets, machines, patients, specialists, and sensors to the web. At long last, the difficulties and prospects of the improvement of IoT-based medicinal service frameworks are talked about in detail. This review additionally summarizes the security and protection worries of IoT, administrations and application of IoT and smart healthcare services that have changed the customary medicinal services framework by making healthcare administration more proficient through their applications.


2019 ◽  
Vol 16 (10) ◽  
pp. 4345-4349
Author(s):  
Latika Kakkar ◽  
Deepali Gupta ◽  
Sapna Saxena ◽  
Sarvesh Tanwar

The Internet of Things (IoT) comprises of various smart devices which are networked together to detect, accumulate, process, improve and interchange significant data over the Internet. IoT has improved our lifestyle by offering various applications such as intelligent home, smart healthcare, traffic monitoring and smart city devices. The IoT devices have restriction of power, battery life, memory and network constraints, so cloud can be used for accumulating and analyzing the IoT data. Due to the considerable increase in data transfer over Internet and other devices, the confidential information from the IoT sources required to be secure from any third party access. Cloud computing (CC) on the other side provides a protected, abrupt and advantageous data storage and computing services all over the internet. The integration of both these technologies can prove to be beneficial for each other. Therefore, we need an efficient and authentic method for secure communication in the IoT and cloud based big data environment. This paper provides a review of amalgamation of the IoT and cloud by featuring the implementation challenges and integration benefits.


2020 ◽  
Vol 10 (21) ◽  
pp. 7699
Author(s):  
Shin-Hung Pan ◽  
Shu-Ching Wang

Because the Internet of Things (IoT) can provide a global service network through various smart devices, the IoT has been widely used in smart transportation, smart cities, smart healthcare, and factory automation through the Internet connection. With the large-scale establishment and 5G (fifth generation) wireless networks, the cellular Internet of Things (CIoT) will continue to be developed and applied to a wide range of applications. In order to provide a reliable application of CIoT, a safe and reliable network topology MECIoT is proposed in this study. To improve the reliability and fault-tolerant capability of the network proposed, the problem of reaching agreement should be revisited. Therefore, the applications in the system can still be performed correctly even if some processing units (PUs) in the system have failed. In this study, a new protocol is proposed to allow all normal PUs in MECIoT to reach an agreement with the minimum amount of data exchanges required and the maximum number of failed PUs allowed in MECIoT. In the end, the optimality of the protocol has been proven by mathematical method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Shaila Ghanti ◽  
G. M. Naik

Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack.


2020 ◽  
Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

In the next generation of computing, Mobile ad-hoc network (MANET) will play a very important role in the Internet of Things (IoT). The MANET is a kind of wireless networks that are self-organizing and auto connected in a decentralized system. Every device in MANET can be moved freely from one location to another in any direction. They can create a network with their neighbors’ smart devices and forward data to another device. The IoT-Cloud-MANET framework of smart devices is composed of IoT, cloud computing, and MANET. This framework can access and deliver cloud services to the MANET users through their smart devices in the IoT framework where all computations, data handling, and resource management are performed. The smart devices can move from one location to another within the range of the MANET network. Various MANETs can connect to the same cloud, they can use cloud service in a real time. For connecting the smart device of MANET to cloud needs integration with mobile apps. My main contribution in this research links a new methodology for providing secure communication on the internet of smart devices using MANET Concept in 5G. The research methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of the Internet of Things in 5G.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6414
Author(s):  
Amjad Rehman ◽  
Tanzila Saba ◽  
Khalid Haseeb ◽  
Souad Larabi Marie-Sainte ◽  
Jaime Lloret

Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
M. Sathya ◽  
M. Jeyaselvi ◽  
Lalitha Krishnasamy ◽  
Mohammad Mazyad Hazzazi ◽  
Prashant Kumar Shukla ◽  
...  

The Internet of Things (IoT) is enhancing our lives in a variety of structures, which consists of smarter cities, agribusiness, and e-healthcare, among others. Even though the Internet of Things has many features with the consumer Internet of Things, the open nature of smart devices and their worldwide connection make IoT networks vulnerable to a variety of assaults. Several approaches focused on attack detection in Internet of Things devices, which has the longest calculation times and the lowest accuracy issues. It is proposed in this paper that an attack detection framework for Internet of Things devices, based on the DWU-ODBN method, be developed to alleviate the existing problems. At the end of the process, the proposed method is used to identify the source of the assault. It comprises steps such as preprocessing, feature extraction, feature selection, and classification to identify the source of the attack. A random oversampler is used to preprocess the input data by dealing with NaN values, categorical features, missing values, and unbalanced datasets before being used to deal with the imbalanced dataset. When the data has been preprocessed, it is then sent to the MAD Median-KS test method, which is used to extract features from the dataset. To categorize the data into attack and nonattack categories, the features are classified using the dual weight updation-based optimal deep belief network (DWU-ODBN) classification technique, which is explained in more detail below. According to the results of the experimental assessment, the proposed approach outperforms existing methods in terms of detecting intrusions and assaults. The proposed work achieves 77 seconds to achieve the attack detection with an accuracy rate of 98.1%.


2019 ◽  
Vol 01 (02) ◽  
pp. 21-30 ◽  
Author(s):  
Senthil Kumar T.

The fog network that is the complementary for the cloud services, bring down the services of the cloud to its edge device with the easy and the early access of the information’s for the task that are time sensitive for the internet of things. The enormous big data flow through the internet of things from various tasks in the variety of application has paved way to seek the efficient ways of resource allocation of the tasks in the fog network. So efficient way of resources allocation entailed to enhances the quality of service for the internet of things and improve the network performance, is proposed in the paper. The efficient resource allocation with reduced energy consumption and maximum resources utilization in the fog network is performed for the information’s gained over the internet of things. The performance of the proposed method is validated using the network simulator to gain knowledge on the proficiency of the proposed method of resource allocation in the fog.


Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

<p class="0abstract">In the next generation of computing, Mobile ad-hoc network (MANET) will play a very important role in the Internet of Things (IoT).  The MANET is a kind of wireless networks that are self-organizing and auto connected in a decentralized system. Every device in MANET can be moved freely from one location to another in any direction. They can create a network with their neighbors’ smart devices and forward data to another device. The IoT-Cloud-MANET framework of smart devices is composed of IoT, cloud computing, and MANET. This framework can access and deliver cloud services to the MANET users through their smart devices in the IoT framework where all computations, data handling, and resource management are performed. The smart devices can move from one location to another within the range of the MANET network. Various MANETs can connect to the same cloud, they can use cloud service in a real time. For connecting the smart device of MANET to cloud needs integration with mobile apps. My main contribution in this research links a new methodology for providing secure communication on the internet of smart devices using MANET Concept in 5G. The research methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of the Internet of Things in 5G.</p>


2020 ◽  
Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

In the next generation of computing, Mobile ad-hoc network (MANET) will play a very important role in the Internet of Things (IoT). The MANET is a kind of wireless networks that are self-organizing and auto connected in a decentralized system. Every device in MANET can be moved freely from one location to another in any direction. They can create a network with their neighbors’ smart devices and forward data to another device. The IoT-Cloud-MANET framework of smart devices is composed of IoT, cloud computing, and MANET. This framework can access and deliver cloud services to the MANET users through their smart devices in the IoT framework where all computations, data handling, and resource management are performed. The smart devices can move from one location to another within the range of the MANET network. Various MANETs can connect to the same cloud, they can use cloud service in a real time. For connecting the smart device of MANET to cloud needs integration with mobile apps. My main contribution in this research links a new methodology for providing secure communication on the internet of smart devices using MANET Concept in 5G. The research methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of the Internet of Things in 5G.


Sign in / Sign up

Export Citation Format

Share Document