scholarly journals Hardware Reliability Analysis of a Coal Mine Gas Monitoring System Based on Fuzzy-FTA

2021 ◽  
Vol 11 (22) ◽  
pp. 10616
Author(s):  
Jingtian Xu ◽  
Man Yang ◽  
Shugang Li

The hardware reliability of a gas monitoring system was investigated using the fuzzy fault tree analysis method. A fault tree was developed considering the hardware failure of the gas monitoring system as a top event. Two minimum path sets were achieved through qualitative analysis using the ascending method. The concept of fuzzy number of the fuzzy set theory was applied to describe the probability of basic event occurrence in the fault tree, and the fuzzy failure probabilities of the middle and top events were calculated using fuzzy AND and OR operators. The results show that the proposed fuzzy fault tree is an effective method of reliability analysis for gas monitoring systems. Results of calculations using this method are more reasonable than those obtained with the conventional fault tree method.

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879231 ◽  
Author(s):  
Shulei Shi ◽  
Bingyou Jiang ◽  
Xiangrui Meng ◽  
Li Yang

During the past decade, gas explosions have been one of the most serious types of disasters in China, threatening the lives of miners and causing significant losses in terms of national property. This article, by constructing the fuzzy fault tree model of gas explosion on the coalface and heading face, deduces the minimum cut sets and minimum path of the fault tree, analyzes the importance of the fault tree structure, and obtains the ratio of gas explosion. The results show that the isolation of gas and heat sources is the most effective way to prevent gas explosion. In addition, a close detection of gas concentration and appropriate treatment can also avoid explosive accidents by reducing the ratio of explosion to below 0.059%, which is the critical value of explosion. The probability of gas explosion occurred in coal working face is about 0%–2.055%, and the most likely probability is 0.059%. However, the probability of gas explosion occurred in heading face is about 0%–8.543%, and the most probability likely to occur is 0.772% which is larger than that in coal working face. The fuzzy fault tree can not only be applied in the analysis of the coal mining gas explosion, but it also provides the theoretical basis for the precaution and prevention of coal mining accidents.


2014 ◽  
Vol 889-890 ◽  
pp. 600-605
Author(s):  
Zhang Yin Dai

With analyzing the shortcomings of "Success Tree" method, the article proposed two new algorithms which base on the basic principles of Boolean algebra and Fussell determinant method respectively to replace the "success tree" method to solve the minimum path sets of fault tree. Combined with the simple and the complex examples' results, the correctness and effectiveness of new algorithms were verified. Especially for the large and complex fault trees, the solving process of these new algorithms can be simplified sharply. Furthermore, the new algorithms could provide the algorithm support for the realization of quantifying the qualitative analysis, modeling the quantitative analysis, and computerizing the model analysis.


2018 ◽  
Vol 35 (5) ◽  
pp. 1115-1141 ◽  
Author(s):  
Mina Moeinedini ◽  
Sadigh Raissi ◽  
Kaveh Khalili-Damghani

Purpose Enterprise resource planning (ERP) is assumed as a commonly used solution in order to provide an integrated view of core business processes, including product planning, manufacturing cost, delivery, marketing, sales, inventory management, shipping and payment. Selection and implementation of a suitable ERP solution are not assumed a trivial project because of the challenging nature of it, high costs, long-duration of installation and customization, as well as lack of successful benchmarking experiences. During the ERP projects, several risk factors threat the successful implementation of the project. These risk factors usually refer to different phases of the ERP projects including purchasing, pilot implementation, teaching, install, synchronizing, and movement from old systems toward new ones, initiation and utilization. These risk factors have dominant effects on each other. The purpose of this paper is to explore the hybrid reliability-based method is proposed to assess the risk factors of ERP solutions. Design/methodology/approach In this regard, the most important risk factors of ERP solutions are first determined. Then, the interactive relations of these factors are recognized using a graph based method, called interpretive structural modeling. The resultant network of relations between these factors initiates a new viewpoint toward the cause and effect relations among risk factors. Afterwards, a fuzzy fault tree analysis is proposed to calculate Failure Fuzzy Possibility (FFP) for the basic events of the fault tree leading to a quantitative evaluation of risk factors. Findings The whole proposed method is applied in a well-known Iranian foodservice distributor as a case study. The most impressive risk factors are identified, classified and prioritized. Moreover, the cause and effect diagram between the risk factors are identified. So, the ERP leader can plan a low-risk project and increase the chance of success. Originality/value According to the authors’ best knowledge, such approach was not reported before in the literature of ERP risk assessments.


Author(s):  
Ahmad Khayyati ◽  
Mohammad Pourgol-Mohammad

Abstract Unmanned Aerial Vehicles (UAV) are increasingly get popularity in many applications. Their operation requires high level of safety and reliability to accomplish successful missions. In this study, the reliability was comparatively analyzed by different available approaches to select the efficient method. First, failure model of the system is developed. Then, three different scenarios are considered to study the effect of redundancies on the system reliability results. In the first scenario, there is no redundancy where in the second scenario there is only one redundant component and in the third scenario, there are three redundant components. Static reliability analysis such as Fault Tree Analysis (FTA), Reliability Block Diagram (RBD), Markov Chain (MC), and Bayesian Networks (BN) are applied on proposed scenarios and results are obtained. Regarding to time dependencies between redundant components, a dynamic-based methodology is also developed in this study through applying Dynamic Fault Tree (DFT) analysis. Proposed static and dynamic approaches are applied on an UAV as a case study and results are discussed. Finally, characteristics of each methodology and related conditions are clarified for selecting the efficient reliability analysis approach.


2020 ◽  
Vol 39 (3) ◽  
pp. 2753-2761
Author(s):  
Hui Zhou ◽  
Haiping Ren

In reliability field, the probabilities of basic events are often treated as exact values in conventional fault tree analysis. However, for many practical systems, because the concept of events may be ambiguous, the factors affecting the occurrence of events are complex and changeable, so it is difficult to obtain accurate values of the occurrence probability of events. Fuzzy sets can well deal with these situations. Thus this paper will develop a novel fault tree analysis method in the assumption of the values of probability of basic events expressed with triangular intuitionistic fuzzy numbers. First, a new ranking function of triangular intuitionistic numbers is established, which can reflect the behavior factors of the decision maker. Then a novel fault tree analysis method is put forward on the basis of operational laws and the proposed ranking function of triangular intuitionistic numbers. Finally, an example of weapon system “automatic gun” is employed to show that the proposed fault tree analysis method is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document