scholarly journals Dynamic Analysis for a Reciprocating Compressor System with Clearance Fault

2021 ◽  
Vol 11 (23) ◽  
pp. 11295
Author(s):  
Shungen Xiao ◽  
Qingfeng Xiao ◽  
Mengmeng Song ◽  
Zexiong Zhang

In order to explore the failure mechanism of a reciprocating compressor system with clearance fault, we implemented a computational framework whereby a simulation model of the mechanism is established using ADAMS software in this paper, and a typical reciprocating compressor model is introduced to validate the design model. In this work, the joint clearance faults between the crankshaft and linkage, between the linkage and crosshead, and in both locations are taken into account computationally. These faults are one of the major causes of vibration. Through dynamic calculation and analysis of a system with clearance fault, the simulated results show that these clearance faults directly influence the vibration. The larger the gap size, the more severe the vibration and the higher the amplitude of the vibration. Furthermore, the clearance number also affects the vibration greatly.

2013 ◽  
Vol 341-342 ◽  
pp. 438-442
Author(s):  
Zhou Zheng ◽  
Bi Zhong Xia ◽  
Yi Ran Liu ◽  
Zhong Dong Ouyang

Turnover mechanism is one of the important parts of the element bar conveying subsystem in the aluminum electrolytic capacitor assembling machine (AECAM). This paper analyzed the structure and motion characteristics of the turnover mechanism, and used the ADAMS software to do its parametric modeling, dynamic analysis and optimization design. Finally the paper concluded that Final result of turnover mechanism optimization was that the maximum of resultant force in the cam rotary center decreased by 49.3%.Application of ADAMS software will provide a new way for design and improvement of the assembling machine in future.


2018 ◽  
Vol 880 ◽  
pp. 226-231 ◽  
Author(s):  
Adrian Sorin Rosca ◽  
Nicolae Craciunoiu ◽  
Ionut Geonea ◽  
Cristina Ploscaru

In this paper the design, experimental and numerical simulation of a test rig for stabilizer bars fatigue resistance study is presented. A virtual CAD of the test rig is developed, for design and simulation purposes. A dynamic simulation model is developed in ADAMS software, to study the stabilizer bar durability. Strain gauge transducers are used to measure the deformations of the stabilizer bar.


Author(s):  
Zhenhua Zhang ◽  
Liang Xu ◽  
Paulo Flores ◽  
Hamid M. Lankarani

Over the last two decades, extensive work has been conducted on dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, analysis of revolute joint clearance is formulated in term of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented, and a simulation model is developed using the analysis/design code MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the clearance joint. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples, considering the different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for further analyzing the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.


2014 ◽  
Vol 716-717 ◽  
pp. 837-840
Author(s):  
Hui Wang ◽  
Xiao Zhi Wang

Using SGA170 mine car as prototype, this paper establishes simulation model of single trailing arm suspension vehicle steering to trapezoidal mechanism using the ADAMS software, and validates the correctness of the proposed model. It can not only effectively shorten the development cycle, reduce development costs and improve the design precision of products, but also lay a solid foundation for other the simulation software.


2011 ◽  
Vol 84-85 ◽  
pp. 289-293
Author(s):  
Yun Liu

Take the German Scheuerler’s four-axle trailer steering mechanism for the study, establish the simulation model of the steering system. After this, the simulation optimization and analysis to model was done with ADAMS software. The results of the analysis show that the objective function’s value of the optimal vehicle steering mechanism model is superior to the objective function’s value of the initial model.


Sign in / Sign up

Export Citation Format

Share Document