scholarly journals Wind Tunnel Test on Windblown Sand Two-Phase Flow Characteristics in Arid Desert Regions

2021 ◽  
Vol 11 (23) ◽  
pp. 11349
Author(s):  
Bin Huang ◽  
Zhengnong Li ◽  
Zhitian Zhang ◽  
Zhefei Zhao ◽  
Bo Gong

Windblown sand two-phase flow characteristics become an essential factor in evaluating the windblown sand load on infrastructures and civil structures. Based on the measured wind characteristics in arid desert regions, windblown sand flow fields with three kinds of sand beds are simulated in the wind tunnel, respectively. The results indicate that the characteristic saltation height of sand particles increases with the wind speed and particle size in the windblown sand flow field. As the sand concentration increases, the wind speed decreases, and the turbulence intensity increases. The concentration, energy, and impact pressure of sand particles increase with increasing wind speed and decrease exponentially with increasing height. At the same wind speed, the concentration, energy, and impact pressure of the coarse sand, fine sand, and mixed sand increases, in turn. Moreover, the variation of kinetic energy with height is similar to that of total energy with height and the proportion of potential energy to total energy is quite small.

Equipment ◽  
2006 ◽  
Author(s):  
Marijus Seporaitis ◽  
S. Gasiunas ◽  
Raimondas Pabarcius

2021 ◽  
pp. 103813
Author(s):  
Dewei Wang ◽  
Shanbin Shi ◽  
Yucheng Fu ◽  
Kyle Song ◽  
Xiaodong Sun ◽  
...  

Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 527-530 ◽  
Author(s):  
Abdalellah O. Mohmmed ◽  
Mohammad S. Nasif ◽  
Hussain H. Al-Kayiem

Author(s):  
Jorge Pinho ◽  
Patrick Rambaud ◽  
Saïd Chabane

The goal of this study is to understand the behavior of a safety relief valve in presence of a two-phase flow induced by cavitation, in which the mass flux tends to be reduced. Two distinct safety relief valves are tested: an API 2J3 type and a transparent model based on an API 1 1/2G3 type. Instead of using a spring, the design of both valves allows the adjustment of the disk at any desired lift. Tests are conducted with water at ambient temperature. Results show a similar influence of cavitation on the flow characteristics of both valves. The liquid pressure recovery factor FL, which is normally used to identify a choked flow condition in a control valve, is experimentally determined in a safety relief valve. The existence of a local minimum located at a height position L/D = 0.14 indicates in this position, a change on the flow characteristics of both valves. It is verified that the existence of a local minimum in the liquid recovery factor is related to the minimum cross section of the flow, which does not remain constant for every lift positions. Furthermore, it is remarked that in the case of the 2J3 safety valve, the blow down ring adjustment has significant influence on the location of the minimum cross sections of the flow.


2014 ◽  
Vol 28 (2) ◽  
pp. 153-160
Author(s):  
Kenichi KATONO ◽  
Goro AOYAMA ◽  
Takuji NAGAYOSHI ◽  
Kenichi YASUDA ◽  
Koji NISHIDA

Sign in / Sign up

Export Citation Format

Share Document