scholarly journals Controllability of Fractional-Order Particle Swarm Optimizer and Its Application in the Classification of Heart Disease

2021 ◽  
Vol 11 (23) ◽  
pp. 11517
Author(s):  
Fu-I Chou ◽  
Tian-Hsiang Huang ◽  
Po-Yuan Yang ◽  
Chin-Hsuan Lin ◽  
Tzu-Chao Lin ◽  
...  

This study proposes a method to improve fractional-order particle swarm optimizer to overcome the shortcomings of traditional swarm algorithms, such as low search accuracy in a high-dimensional space, falling into local minimums, and nonrobust results. In natural phenomena, our controllable fractional-order particle swarm optimizer can explore search spaces in detail to obtain high resolutions. Moreover, the proposed algorithm is memorable, i.e., position updates focus on the particle position of previous and last generations, rendering it conservative when updating the position, and obtained results are robust. For verifying the algorithm’s effectiveness, 11 test functions compare the average value, overall best value, and standard deviation of the controllable fractional-order particle swarm optimizer and controllable particle swarm optimizer; experimental results show that the stability of the former is better than the latter. Furthermore, the solution position found by the controllable fractional-order particle swarm optimizer is more reliable. Therefore, the improved method proposed herein is effective. Moreover, this research describes how a heart disease prediction application uses the optimizer we proposed to optimize XGBoost hyperparameters with custom target values. The final verification of the obtained prediction model is effective and reliable, which shows the controllability of our proposed fractional-order particle swarm optimizer.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


2017 ◽  
Vol 23 (8) ◽  
pp. 985-1001 ◽  
Author(s):  
Ali MORTAZAVI ◽  
Vedat TOĞAN ◽  
Ayhan NUHOĞLU

This study investigates the performances of the integrated particle swarm optimizer (iPSO) algorithm in the layout and sizing optimization of truss structures. The iPSO enhances the standard PSO algorithm employing both the concept of weighted particle and the improved fly-back method to handle optimization constraints. The performance of the recent algorithm is tested on a series of well-known truss structures weight minimization problems including mixed design search spaces (i.e. with both discrete and continuous variables) over various types of constraints (i.e. nodal dis­placements, element stresses and buckling criterion). The results demonstrate the validity of the proposed approach in dealing with combined layout and size optimization problems.


2019 ◽  
Vol 9 (24) ◽  
pp. 5537 ◽  
Author(s):  
Po-Yuan Yang ◽  
Fu-I Chou ◽  
Jinn-Tsong Tsai ◽  
Jyh-Horng Chou

An adaptive-uniform-experimental-design-based fractional particle swarm optimizer (AUFPSO) with non-linear time-varying evolution (NTE) is proposed. A particle swarm optimizer (PSO) is an excellent evolutionary algorithm due to its simple structure and rapid convergence. Nevertheless, PSO has notable drawbacks. Although many proposed methods and strategies have enhanced its effectiveness and performance, PSO is limited by its tendency to fall into local optima and its tendency to obtain different solutions in each search (i.e., its weak robustness). Introducing fractional-order calculus in PSO (FPSO) can correct the order of the velocity derivative for each particle, which enhances the diversity and algorithmic effectiveness. This study used NTE of the order of the velocity derivative, inertia weight, cognitive parameter, and social parameter in an FPSO used to search for a global optimal solution. To obtain the best combination of FPSO and NTE, an adaptive uniform experimental design (AUED) method was used to deal with this essential issue. The AUED method integrates a uniform layout with the best combination phase and a stepwise ratio to assist in selecting the best combination for FPSO-NTE. Experimental applications in 15 global numerical optimization problems confirmed that the AUFPSO-NTE had a better performance and robustness than existing PSO-related algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Geng Zhang ◽  
Yangmin Li

Although the original particle swarm optimizer (PSO) method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO). In case that the interacting of the elements inD-dimensional function vectorX=[x1,x2,…,xd,…,xD]is independent, cooperative particle swarm optimizer (CPSO) is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED) learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.


Sign in / Sign up

Export Citation Format

Share Document