scholarly journals Essential Features in a Theory of Context for Enabling Artificial General Intelligence

2021 ◽  
Vol 11 (24) ◽  
pp. 11991
Author(s):  
Mayank Kejriwal

Despite recent Artificial Intelligence (AI) advances in narrow task areas such as face recognition and natural language processing, the emergence of general machine intelligence continues to be elusive. Such an AI must overcome several challenges, one of which is the ability to be aware of, and appropriately handle, context. In this article, we argue that context needs to be rigorously treated as a first-class citizen in AI research and discourse for achieving true general machine intelligence. Unfortunately, context is only loosely defined, if at all, within AI research. This article aims to synthesize the myriad pragmatic ways in which context has been used, or implicitly assumed, as a core concept in multiple AI sub-areas, such as representation learning and commonsense reasoning. While not all definitions are equivalent, we systematically identify a set of seven features associated with context in these sub-areas. We argue that such features are necessary for a sufficiently rich theory of context, as applicable to practical domains and applications in AI.

2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


2020 ◽  
Vol 11 (2) ◽  
pp. 41-47
Author(s):  
Amandeep Kaur ◽  
Madhu Dhiman ◽  
Mansi Tonk ◽  
Ramneet Kaur

Artificial Intelligence is the combination of machine and human intelligence, which are in research trends from the last many years. Different Artificial Intelligence programs have become capable of challenging humans by providing Expert Systems, Neural Networks, Robotics, Natural Language Processing, Face Recognition and Speech Recognition. Artificial Intelligence brings a bright future for different technical inventions in various fields. This review paper shows the general concept of Artificial Intelligence and presents an impact of Artificial Intelligence in the present and future world.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


Author(s):  
Kanza Noor Syeda ◽  
Syed Noorulhassan Shirazi ◽  
Syed Asad Ali Naqvi ◽  
Howard J Parkinson ◽  
Gary Bamford

Due to modern powerful computing and the explosion in data availability and advanced analytics, there should be opportunities to use a Big Data approach to proactively identify high risk scenarios on the railway. In this chapter, we comprehend the need for developing machine intelligence to identify heightened risk on the railway. In doing so, we have explained a potential for a new data driven approach in the railway, we then focus the rest of the chapter on Natural Language Processing (NLP) and its potential for analysing accident data. We review and analyse investigation reports of railway accidents in the UK, published by the Rail Accident Investigation Branch (RAIB), aiming to reveal the presence of entities which are informative of causes and failures such as human, technical and external. We give an overview of a framework based on NLP and machine learning to analyse the raw text from RAIB reports which would assist the risk and incident analysis experts to study causal relationship between causes and failures towards the overall safety in the rail industry.


Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


Sign in / Sign up

Export Citation Format

Share Document