scholarly journals Real World of Artificial Intelligence - A Review

2020 ◽  
Vol 11 (2) ◽  
pp. 41-47
Author(s):  
Amandeep Kaur ◽  
Madhu Dhiman ◽  
Mansi Tonk ◽  
Ramneet Kaur

Artificial Intelligence is the combination of machine and human intelligence, which are in research trends from the last many years. Different Artificial Intelligence programs have become capable of challenging humans by providing Expert Systems, Neural Networks, Robotics, Natural Language Processing, Face Recognition and Speech Recognition. Artificial Intelligence brings a bright future for different technical inventions in various fields. This review paper shows the general concept of Artificial Intelligence and presents an impact of Artificial Intelligence in the present and future world.

Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


2019 ◽  
Vol 3 (2) ◽  
pp. 31-40 ◽  
Author(s):  
Ahmed Shamsaldin ◽  
Polla Fattah ◽  
Tarik Rashid ◽  
Nawzad Al-Salihi

At present, deep learning is widely used in a broad range of arenas. A convolutional neural networks (CNN) is becoming the star of deep learning as it gives the best and most precise results when cracking real-world problems. In this work, a brief description of the applications of CNNs in two areas will be presented: First, in computer vision, generally, that is, scene labeling, face recognition, action recognition, and image classification; Second, in natural language processing, that is, the fields of speech recognition and text classification.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e14062-e14062
Author(s):  
Meng Ma ◽  
Arielle Redfern ◽  
Xiang Zhou ◽  
Dan Li ◽  
Ying Ru ◽  
...  

e14062 Background: Real world evidence generated from electronic health records (EHRs) is playing an increasing role in health care decisions. It has been recognized as an essential element to assess cancer outcomes in real-world settings. Automatically abstracting outcomes from notes is becoming a fundamental challenge in medical informatics. In this study, we aim to develop a system to automatically abstract outcomes (Progression, Response, Stable Disease) from notes in lung cancer. Methods: A lung cancer cohort (n = 5,003) was obtained from the Mount Sinai Data Warehouse. The progress, pathology and radiology notes of patients were used. We integrated various techniques of Natural Language Processing (NLP) and Artificial Intelligence (AI) and developed a system to automatically abstract outcomes. The corresponding images, biopsies and lines of treatments (LOTs) were abstracted as attributes of outcomes. This system includes four information models: 1. Customized NLP annotator model: preprocessor, section detector, sentence splitter, named entity recognition, relation detector; CRF and LSTM methods were applied to recognize entities and relations. 2. Clinical Outcome container model: biopsy evidence extractor, lines of treatment detector, image evidence extractor, clinical outcome event recognizer, date detector, and temporal reasoning; Domain-specific rules were crafted to automatically infer outcomes. 3. Document Summarizer; 4. Longitudinal Outcome Summarizer. Results: To evaluate the outcomes abstracted, we curated a subset (n = 792) from patient cohort for which LOTs were available. About 61% of the outcomes identified were supported by radiologic images (time window = ±14 days) or biopsy pathology results (time window = ±100 days). In 91% (720/792) of patients, Progression was abstracted within a time window of 90 days prior to first-line treatment. Also, 72% of the Progression events identified were accompanied by a downstream event (e.g., treatment change or death). We randomly selected 250 outcomes for manual curation, and 197 outcomes were assessed to be correct (precision = 79%). Moreover, our automated abstraction system improved human abstractor efficiency to curate outcomes, reducing curation time per patient by 90%. Conclusions: We have demonstrated the feasibility and effectiveness of NLP and AI approaches to abstract outcomes from lung cancer EHR data. It promises to automatically abstract outcomes and other clinical entities from notes across all cancers.


With the evolution of artificial intelligence to deep learning, the age of perspicacious machines has pioneered that can even mimic as a human. A Conversational software agent is one of the best-suited examples of such intuitive machines which are also commonly known as chatbot actuated with natural language processing. The paper enlisted some existing popular chatbots along with their details, technical specifications, and functionalities. Research shows that most of the customers have experienced penurious service. Also, the inception of meaningful cum instructive feedback endure a demanding and exigent assignment as enactment for chatbots builtout reckon mostly upon templates and hand-written rules. Current chatbot models lack in generating required responses and thus contradict the quality conversation. So involving deep learning amongst these models can overcome this lack and can fill up the paucity with deep neural networks. Some of the deep Neural networks utilized for this till now are Stacked Auto-Encoder, sparse auto-encoders, predictive sparse and denoising auto-encoders. But these DNN are unable to handle big data involving large amounts of heterogeneous data. While Tensor Auto Encoder which overcomes this drawback is time-consuming. This paper has proposed the Chatbot to handle the big data in a manageable time.


2021 ◽  
Vol 11 (24) ◽  
pp. 11991
Author(s):  
Mayank Kejriwal

Despite recent Artificial Intelligence (AI) advances in narrow task areas such as face recognition and natural language processing, the emergence of general machine intelligence continues to be elusive. Such an AI must overcome several challenges, one of which is the ability to be aware of, and appropriately handle, context. In this article, we argue that context needs to be rigorously treated as a first-class citizen in AI research and discourse for achieving true general machine intelligence. Unfortunately, context is only loosely defined, if at all, within AI research. This article aims to synthesize the myriad pragmatic ways in which context has been used, or implicitly assumed, as a core concept in multiple AI sub-areas, such as representation learning and commonsense reasoning. While not all definitions are equivalent, we systematically identify a set of seven features associated with context in these sub-areas. We argue that such features are necessary for a sufficiently rich theory of context, as applicable to practical domains and applications in AI.


AI Matters ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 18-20
Author(s):  
Kartik Talamadupula

The marriage of Artificial Intelligence (AI) techniques to problems surrounding the generation, maintenance, and use of source code has come to the fore in recent years as an important AI application area1. A large chunk of this recent attention can be attributed to contemporaneous advancements in Natural Language Processing (NLP) techniques and sub-fields. The naturalness hypothesis, which states that "software is a form of human communication" and that code exhibits patterns that are similar to (human) natural languages (Devanbu, 2015; Hindle, Barr, Gabel, Su, & Devanbu, 2016), has allowed for the application of many of these NLP advances to code-centric usecases. This development has contributed to a spate of work in the community --- much of it captured in a survey by Allamanis, Barr, Devanbu, and Sutton (2018) that focuses on classifying these approaches by the type of probabilistic model applied to source code. This increase in the variety of AI techniques applied to source code has found various manifestations in the industry at large. Code and software form the backbone that underpins almost all modern technical advancements: it is thus natural that breakthroughs in this area should reflect in the emergence of real world deployments.


2020 ◽  
pp. 1-38
Author(s):  
Amandeep Kaur ◽  
◽  
Anjum Mohammad Aslam ◽  

In this chapter we discuss the core concept of Artificial Intelligence. We define the term of Artificial Intelligence and its interconnected terms such as Machine learning, deep learning, Neural Networks. We describe the concept with the perspective of its usage in the area of business. We further analyze various applications and case studies which can be achieved using Artificial Intelligence and its sub fields. In the area of business already numerous Artificial Intelligence applications are being utilized and will be expected to be utilized more in the future where machines will improve the Artificial Intelligence, Natural language processing, Machine learning abilities of humans in various zones.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Krzysztof Wróbel ◽  
Michał Karwatowski ◽  
Maciej Wielgosz ◽  
Marcin Pietroń ◽  
Kazimierz Wiatr

Convolutional Neural Networks (CNNs) were created for image classification tasks. Quickly, they were applied to other domains, including Natural Language Processing (NLP). Nowadays, the solutions based on artificial intelligence appear on mobile devices and in embedded systems, which places constraints on, among others, the memory and power consumption. Due to CNNs memory and computing requirements, to map them to hardware they need to be compressed.This paper presents the results of compression of the efficient CNNs for sentiment analysis. The main steps involve pruning and quantization. The process of mapping the compressed network to FPGA and the results of this implementation are described. The conducted simulations showed that 5-bit width is enough to ensure no drop in accuracy when compared to the floating point version of the network. Additionally, the memory footprint was significantly reduced (between 85% and 93% comparing to the original model).


Sign in / Sign up

Export Citation Format

Share Document