scholarly journals An Investigation of the High Efficiency Estimation Approach of the Large-Scale Scattered Point Cloud Normal Vector

2018 ◽  
Vol 8 (3) ◽  
pp. 454 ◽  
Author(s):  
Xianglin Meng ◽  
Wantao He ◽  
Junyan Liu
2011 ◽  
Vol 63-64 ◽  
pp. 470-473
Author(s):  
Hong Fei Zhang ◽  
Xiao Jun Cheng ◽  
Yan Ping Liu

We introduce an improved compressing algorithm with features reserved for point cloud. Divided-box method is employed for compressing algorithm to improve the neighbor field searching efficiency, with which normal vector and curvature of points are calculated, and feature points are reserved according to reducing rule, finally, based on the octree theory, the smallest grid is refined until which reaches the minimum requirements, then reserve the most representative point of the smallest grid, remove the other points, and data reduction is done. Experimental results show that the compression algorithm conserved the features of point cloud with high efficiency.


Author(s):  
C. Wen ◽  
Y. Xia ◽  
Y. Lian ◽  
Y. Dai ◽  
J. Tan ◽  
...  

<p><strong>Abstract.</strong> Indoor 3D mapping provides a useful three-dimensional structure via an indoor map for many applications. To acquire highly efficient and relatively accurate mapping for large-scale GPS/GNSS-denied scene, we present an upgraded backpacked laser scanning system and a car-mounted indoor mobile laser scanning system. The systems provide both 3D laser scanning point cloud and camera images. In this paper, a simultaneous extrinsic calibration approach for multiple multi-beam LIDAR and multiple cameras is also proposed using the Simultaneous Localization and Mapping (SLAM)-based algorithm. The proposed approach uses the SLAM-based algorithm to achieve a large calibration scene using mobile platforms, registers an acquired multi-beam LIDAR point cloud to the terrestrial LIDAR point cloud to acquire denser points for corner feature extraction, and finally achieves simultaneous calibration. With the proposed mapping and calibration algorithms, we can provide centimetre-lever coloured point cloud with relatively high efficiency and accuracy.</p>


Author(s):  
W. Sun ◽  
J. Wang ◽  
F. Jin ◽  
Z. Liang ◽  
Y. Yang

In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2020 ◽  
Vol 60 (1) ◽  
pp. 159-168
Author(s):  
V. V. Antonenko ◽  
A. V. Zubkov ◽  
S. N. Kruchina

Data were obtained on the basis of the results of research carried out on the territory of the educational and experimental farm of the Timiryazev State Agrarian University, in Moscow during 2018-2019. As a result of the surveys, the most dangerous diseases and pests of pome crops on the territory of this farm were established. The most resistant apple and pear varieties to major diseases have been identified. Peculiarities of development of alternariosis on pear are described, the harmfulness of the disease on pear and apple seedlings is noted. A possible role in the transfer of alternariosis infection from garden-protective plantations and weed vegetation to fruit trees was noted. A possible role has been established in the transport of septoriosis, powdery dew infection from dicotyledonous weeds plants. The peculiarities of the spread of infection under the influence of wind direction are noted. The results and peculiarities of the application of various methods of scaring birds in the orchard are presented. As a result of route surveys the most harmful weed plants have been identified. The possibility of using herbicides of different mechanism of action in fruit gardens for weed control has been studied. High efficiency and relative safety of application of herbicides of contact action in nursery fields, operational orchards and for control of piglets on fruit trees are shown. Recommendations are given for the use of soil and systemic herbicides of soil in seedlings beds, the first and second fields of the nursery, as well as in the process of production of large-scale planting material and operational orchards of fruit crops. The safety of the herbicides in question is established when used in accordance with the recommended methods of use.


Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

2020 ◽  
Vol 18 (1) ◽  
pp. 287-294
Author(s):  
Harsasi Setyawati ◽  
Handoko Darmokoesoemo ◽  
Irmina Kris Murwani ◽  
Ahmadi Jaya Permana ◽  
Faidur Rochman

AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.


Author(s):  
Luis A Leiva ◽  
Asutosh Hota ◽  
Antti Oulasvirta

Abstract Designers are increasingly using online resources for inspiration. How to best support design exploration without compromising creativity? We introduce and study Design Maps, a class of point-cloud visualizations that makes large user interface datasets explorable. Design Maps are computed using dimensionality reduction and clustering techniques, which we analyze thoroughly in this paper. We present concepts for integrating Design Maps into design tools, including interactive visualization, local neighborhood exploration and functionality to integrate existing solutions to the design at hand. These concepts were implemented in a wireframing tool for mobile apps, which was evaluated with actual designers performing realistic tasks. Overall, designers find Design Maps supporting their creativity (avg. CSI score of 74/100) and indicate that the maps producing consistent whitespacing within cloud points are the most informative ones.


Sign in / Sign up

Export Citation Format

Share Document