A high efficiency scheme for large-scale satellite mobile messaging systems

Author(s):  
O. del Rio Herrero ◽  
R. De Gaudenzi
Keyword(s):  
2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2020 ◽  
Vol 60 (1) ◽  
pp. 159-168
Author(s):  
V. V. Antonenko ◽  
A. V. Zubkov ◽  
S. N. Kruchina

Data were obtained on the basis of the results of research carried out on the territory of the educational and experimental farm of the Timiryazev State Agrarian University, in Moscow during 2018-2019. As a result of the surveys, the most dangerous diseases and pests of pome crops on the territory of this farm were established. The most resistant apple and pear varieties to major diseases have been identified. Peculiarities of development of alternariosis on pear are described, the harmfulness of the disease on pear and apple seedlings is noted. A possible role in the transfer of alternariosis infection from garden-protective plantations and weed vegetation to fruit trees was noted. A possible role has been established in the transport of septoriosis, powdery dew infection from dicotyledonous weeds plants. The peculiarities of the spread of infection under the influence of wind direction are noted. The results and peculiarities of the application of various methods of scaring birds in the orchard are presented. As a result of route surveys the most harmful weed plants have been identified. The possibility of using herbicides of different mechanism of action in fruit gardens for weed control has been studied. High efficiency and relative safety of application of herbicides of contact action in nursery fields, operational orchards and for control of piglets on fruit trees are shown. Recommendations are given for the use of soil and systemic herbicides of soil in seedlings beds, the first and second fields of the nursery, as well as in the process of production of large-scale planting material and operational orchards of fruit crops. The safety of the herbicides in question is established when used in accordance with the recommended methods of use.


2020 ◽  
Vol 18 (1) ◽  
pp. 287-294
Author(s):  
Harsasi Setyawati ◽  
Handoko Darmokoesoemo ◽  
Irmina Kris Murwani ◽  
Ahmadi Jaya Permana ◽  
Faidur Rochman

AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.


Author(s):  
Yuan-Ho Chen ◽  
Chieh-Yang Liu

AbstractIn this paper, a very-large-scale integration (VLSI) design that can support high-efficiency video coding inverse discrete cosine transform (IDCT) for multiple transform sizes is proposed. The proposed two-dimensional (2-D) IDCT is implemented at a low area by using a single one-dimensional (1-D) IDCT core with a transpose memory. The proposed 1-D IDCT core decomposes a 32-point transform into 16-, 8-, and 4-point matrix products according to the symmetric property of the transform coefficient. Moreover, we use the shift-and-add unit to share hardware resources between multiple transform dimension matrix products. The 1-D IDCT core can simultaneously calculate the first- and second-dimensional data. The results indicate that the proposed 2-D IDCT core has a throughput rate of 250 MP/s, with only 110 K gate counts when implemented into the Taiwan semiconductor manufacturing (TSMC) 90-nm complementary metal-oxide-semiconductor (CMOS) technology. The results show the proposed circuit has the smallest area supporting the multiple transform sizes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yanling Zhao ◽  
Huanqing Zhang

Background: Bearing testing machine is the key equipment for bearing design, theoretical research and improvement, and it plays an important role in the performance of bearing life, fatigue, vibration and working temperature. With the requirements of aerospace, military equipment, automobile manufacturing and other industrial fields of the bearing are becoming higher and higher. There is an urgent need for high-precision and high-efficiency bearing testing machines to monitor and analyze the performance of bearings. Objective: By analyzing the recent patents, the characteristics and existing problems of the current bearing testing machine are summarized to provide references for the development of bearing test equipment in the future. Methods: This paper reviews various representative patents related to the third generation bearing testing machines. Results: Although the structure of bearing testing machines is different, the main problems in the structure and design principle of bearing testing machine have been summarized and analyzed, and the development of trend and direction of the future bearing testing machine have been discussed. Conclusion: Bearing testing machines for health monitoring of bearing life cycle is of great significance. The current bearing testing machine has basically achieved the monitoring and analysis However, due to the emergence of new types of bearings, further improvement is still needed. With the development of testing technology towards intelligent and big data-driven direction, bearing testing machine is moving towards the type of cloud computing and large-scale testing.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 650 ◽  
Author(s):  
Carmelo Lo Vecchio ◽  
David Sebastián ◽  
María Lázaro ◽  
Antonino Aricò ◽  
Vincenzo Baglio

Direct methanol fuel cells (DMFCs) are emerging technologies for the electrochemical conversion of the chemical energy of a fuel (methanol) directly into electrical energy, with a low environmental impact and high efficiency. Yet, before this technology can reach a large-scale diffusion, specific issues must be solved, in particular, the high cost of the cell components. In a direct methanol fuel cell system, high capital costs are mainly derived from the use of noble metal catalysts; therefore, the development of low-cost electro-catalysts, satisfying the target requirements of high performance and durability, represents an important challenge. The research is currently addressed to the development of metal–nitrogen–carbon (M–N–C) materials as cheap and sustainable catalysts for the oxygen reduction reaction (ORR) in an acid environment, for application in polymer electrolyte fuel cells fueled by hydrogen or alcohol. In particular, this mini-review summarizes the recent advancements achieved in DMFCs using M–N–C catalysts. The presented analysis is restricted to M–N–C catalysts mounted at the cathode of a DMFC or investigated in rotating disk electrode (RDE) configuration for the ORR in the presence of methanol in order to study alcohol tolerance. The main synthetic routes and characteristics of the catalysts are also presented.


2011 ◽  
Vol 460-461 ◽  
pp. 381-387
Author(s):  
Jian Shi Zhang ◽  
Zhi Yi Fang

Multi-federation interconnected structure is the support structure that adapts to large-scale tactical communication network joint training. It needs to organize the distribution and transmission of various kinds of data effectively to assure high efficiency training. Aiming at the information distribution problem of multi-federation interconnected tactical communication network simulation training process, the single federation structure and multi-federation interconnected structure were brought out. Based on the region discerption of training scale and data classification of data, aiming at the characteristics of network traffic, networking parameters and operation state data, the specific solutions were proposed, so that the information distribution in the simulation training was optimized


Sign in / Sign up

Export Citation Format

Share Document