Study on Improved Point Cloud Compression Algorithm with Features Reserved

2011 ◽  
Vol 63-64 ◽  
pp. 470-473
Author(s):  
Hong Fei Zhang ◽  
Xiao Jun Cheng ◽  
Yan Ping Liu

We introduce an improved compressing algorithm with features reserved for point cloud. Divided-box method is employed for compressing algorithm to improve the neighbor field searching efficiency, with which normal vector and curvature of points are calculated, and feature points are reserved according to reducing rule, finally, based on the octree theory, the smallest grid is refined until which reaches the minimum requirements, then reserve the most representative point of the smallest grid, remove the other points, and data reduction is done. Experimental results show that the compression algorithm conserved the features of point cloud with high efficiency.

2020 ◽  
pp. 002029402096424
Author(s):  
Xiaocui Yuan ◽  
Baoling Liu ◽  
Yongli Ma

The k-nearest neighborhoods (kNN) of feature points of complex surface model are usually isotropic, which may lead to sharp feature blurring during data processing, such as noise removal and surface reconstruction. To address this issue, a new method was proposed to search the anisotropic neighborhood for point cloud with sharp feature. Constructing KD tree and calculating kNN for point cloud data, the principal component analysis method was employed to detect feature points and estimate normal vectors of points. Moreover, improved bilateral normal filter was used to refine the normal vector of feature point to obtain more accurate normal vector. The isotropic kNN of feature point were segmented by mapping the kNN into Gaussian sphere to form different data-clusters, with the hierarchical clustering method used to separate the data in Gaussian sphere into different clusters. The optimal anisotropic neighborhoods of feature point corresponded to the cluster data with the maximum point number. To validate the effectiveness of our method, the anisotropic neighbors are applied to point data processing, such as normal estimation and point cloud denoising. Experimental results demonstrate that the proposed algorithm in the work is more time-consuming, but provides a more accurate result for point cloud processing by comparing with other kNN searching methods. The anisotropic neighborhood searched by our method can be used to normal estimation, denoising, surface fitting and reconstruction et al. for point cloud with sharp feature, and our method can provide more accurate result comparing with isotropic neighborhood.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 399
Author(s):  
Miao Gong ◽  
Zhijiang Zhang ◽  
Dan Zeng

High-precision and high-density three-dimensional point cloud models usually contain redundant data, which implies extra time and hardware costs in the subsequent data processing stage. To analyze and extract data more effectively, the point cloud must be simplified before data processing. Given that point cloud simplification must be sensitive to features to ensure that more valid information can be saved, in this paper, a new simplification algorithm for scattered point clouds with feature preservation, which can reduce the amount of data while retaining the features of data, is proposed. First, the Delaunay neighborhood of the point cloud is constructed, and then the edge points of the point cloud are extracted by the edge distribution characteristics of the point cloud. Second, the moving least-square method is used to obtain the normal vector of the point cloud and the valley ridge points of the model. Then, potential feature points are identified further and retained on the basis of the discrete gradient idea. Finally, non-feature points are extracted. Experimental results show that our method can be applied to models with different curvatures and effectively avoid the hole phenomenon in the simplification process. To further improve the robustness and anti-noise ability of the method, the neighborhood of the point cloud can be extended to multiple levels, and a balance between simplification speed and accuracy needs to be found.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Author(s):  
Shigang Wang ◽  
Shuai Peng ◽  
Jiawen He

Due to the point cloud of oral scan denture has a large amount of data and redundant points. A point cloud simplification algorithm based on feature preserving is proposed to solve the problem that the feature preserving is incomplete when processing point cloud data and cavities occur in relatively flat regions. Firstly, the algorithm uses kd-tree to construct the point cloud spatial topological to search the k-Neighborhood of the sampling point. On the basis of that to calculate the curvature of each point, the angle between the normal vector, the distance from the point to the neighborhood centroid, as well as the standard deviation and the average distance from the point to the neighborhood on this basis, therefore, the detailed features of point cloud can be extracted by multi-feature extraction and threshold determination. For the non-characteristic region, the non-characteristic point cloud is spatially divided through Octree to obtain the K-value of K-means clustering algorithm and the initial clustering center point. The simplified results of non-characteristic regions are obtained after further subdivision. Finally, the extracted detail features and the reduced result of non-featured region will be merged to obtain the final simplification result. The experimental results show that the algorithm can retain the characteristic information of point cloud model better, and effectively avoid the phenomenon of holes in the simplification process. The simplified results have better smoothness, simplicity and precision, and are of high practical value.


Sign in / Sign up

Export Citation Format

Share Document