scholarly journals Fatigue Behavior of Prestressed Concrete Beam for Straddle-Type Monorail Tracks

2018 ◽  
Vol 8 (7) ◽  
pp. 1136 ◽  
Author(s):  
Qianhui Pu ◽  
Hanyu Wang ◽  
Hongye Gou ◽  
Yi Bao ◽  
Meng Yan

Monorail transportation systems are widely built in medium and small cities, as well as hilly cities, because of their excellent performance. A prestressed concrete track beam is a key load-carrying structural component and guideway subjected to repeated traffic load. The fatigue behavior of the prestressed concrete beam is critical for the safety of the transportation system. This paper presents the results of an experimental study on the fatigue behavior of a prestressed concrete beam in terms of stiffness degradation and strain change. The displacement and rotation of the beam of concrete and reinforcement were examined, respectively. A three-dimensional finite element model was established to help understand the development of the mechanical behavior. No crack was observed throughout the test. Both concrete and bars behaved in their linear-elastic stage throughout the test, and the bond between them performed well.

2014 ◽  
Vol 501-504 ◽  
pp. 1628-1632
Author(s):  
Hui Li Wang ◽  
Hong Wang ◽  
Si Feng Qin

Through three dimensional finite element analyzes, overall cast-in-place prestressed concrete pier seismic crack characteristic is researched. The separation formula finite element model is established by means of bilinear reinforce model and Kent-R.Park concretes model, without considering slip between concretes and. reinforce. It compares and analyzes the seismic crack characteristic between prestressed concrete pier and reinforcement concretes pier. The results show that the prestressed reinforcement can reduce the tensile zone of concrete, put off the appearance of cracks, improved the stiffness of pier, and reduced the top displacement.


Author(s):  
A. Ibrahim ◽  
C.C. Berndt

Abstract The effect of WC-Co coating on the high cycle fatigue (HCF) behavior of SAE 12L14 steel and 2024-T4 aluminum was investigated. The fatigue tests were performed at room temperature and 370°C. The fatigue life distributions of specimens in the polished, grit blasted, peened, and coated conditions are presented as a function of the probability of failure. HVOF sprayed WC-Co coating has influenced the fatigue life of aluminum and steel. Factors contributing to this influence, which include grit blasting, elastic modulus, and residual stress, are discussed. A three-dimensional finite-element model (FEM) of the coated specimen was used to calculate the stress distribution across the coating and the substrate. The results of the analytical model are in good agreement with fatigue lives observed experimentally.


Author(s):  
Mikel Abasolo ◽  
Josu Aguirrebeitia ◽  
Javier Vallejo ◽  
Joseba Albizuri ◽  
Ibai Coria

Misfit is unavoidable in dental implant-supported prostheses due to machining process or inappropriate assembling, and the definition of an admissible misfit is still a controversial issue. This work aims to understand the behavior of the screws in dental implant-supported prostheses to estimate an admissible vertical misfit value in terms of screw fatigue failure. For that purpose, a finite element model of a dental implant-supported prosthesis was created and analyzed. Vertical misfits were introduced in different positions, the lower and upper screws were tightened to the bolting force values recommended by the manufacturer, and two different occlusal loads were analyzed. In addition, two different prosthesis materials were studied. Screw load variations were reported and a fatigue analysis was performed. As a result, it was observed that the screw tightening sequence closed small vertical misfits (equal to or less than 40 µm), whereas larger misfits (more than 40 µm) remained open. If the vertical misfit is closed by the end of the tightening sequence, it may be considered equivalent to the ideal fit situation in regard to screw fatigue failure. The prosthesis material had no significant influence on the fatigue behavior.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document