scholarly journals Research on an Anthropomorphic Phantom for Evaluation of the Medical Device Electromagnetic Field Exposure SAR

2018 ◽  
Vol 8 (10) ◽  
pp. 1929 ◽  
Author(s):  
Shu Li ◽  
Zengwen Su ◽  
Hao Wang ◽  
Quan Wang ◽  
Haiping Ren

A medical device will emit electromagnetic radiation to its surrounding environment either actively or passively. However, clinicians are unaware as to whether the ambient electromagnetic radiation will exceed the human body’s endurance capacity. In this paper, the mathematical model of electromagnetic parameters devoted to Specific Absorption Rate (SAR) testing of medical devices was established using a Debye Model. Body liquids featuring dielectric properties including the conductivity and permittivity of tissues at various body parts were simulated on the basis of results derived from the model. A simplified anthropomorphic phantom for the SAR test was founded on the basis of geometric parameters by following the principles of resemblance and consistent conductivity. A full-band electromagnetic mathematical model of brain, muscle, heart, lungs, stomach, and kidneys was set up. Electromagnetic radiation levels of a wearable Electrocardiograph monitoring device were measured and found that the maximum electric field intensity was up to 30 V/m, and the electromagnetic radiation SAR value was 0.96 W/kg, which were equivalent to the electromagnetic radiation exposure of the occupational group. The results established that electromagnetic radiation of certain medical devices exceeded the allowed values specified by the World Health Organization (WHO). Therefore, further studies within the field of medicine are required to decide whether additional evaluation measures should be required.

Author(s):  
Vivekanandan Kalaiselvan ◽  
Aishwarya G. ◽  
Ashish Sharma

As Medical device application in disease prevention, diagnosis or treatment is evolving to a greater extent; there is a need for regulation to monitor its quality, safety and efficacy. The present article attempts to study the medical device regulation available in eleven South-East Asian World Health Organization (WHO) member countries. The information searched from the available sources reveals that medical device regulation exists in seven countries. Most of the countries follow the International Organization for Standardization (ISO) 13485 for their quality standards in medical devices. Most countries also specified the time frame and authority to which adverse event is to be reported. Countries like India and Thailand have separate Adverse Event reporting forms for the medical device. The present study reveals that there is no separate web-based database for adverse event reporting of medical devices. Therefore, WHO South-East Asian Regulators Network (SEARN) under South East Regulatory Office (SERO) office may provide handholding support to these regions in developing a common software or tool for the management and analysis of signals arising from the adverse events.


2019 ◽  
Vol 11 (5) ◽  
pp. 379-402
Author(s):  
Sally McDonald ◽  
Alice Fabbri ◽  
Lisa Parker ◽  
Jane Williams ◽  
Lisa Bero

Abstract Medicine and medical device donations have the potential to improve access to healthcare in some of the poorest parts of the world, but can do more harm than good. World Health Organization guidelines advise donors on how to make effective and useful donations. Our objective was to assess compliance of recent medicine or medical device donations with WHO guidelines from 2009 onwards. We searched media, academic and gray literature, including industry and organizational documents, to identify reports describing specific incidences of the donation of medicines or devices. We collected data on donation characteristics and guideline compliance. We identified 88 reports describing 53 donations. Most did not comply with at least some items in WHO guidelines and no reports provided sufficient information to assess compliance against all items. Donations that fail to comply with guidelines may be excessive, expired and/or burden recipient countries with storage and disposal costs. It was estimated that 40–70% of donated medical devices are not used as they are not functional, appropriate, or staff lack training. More effective donations involved needs assessments, training and the use of existing distribution networks. The donation of medicines and medical devices is frequently inadequately reported and at times inappropriate. Guidelines need to be enforced to ensure effective donations.


Author(s):  
Patricia J. Zettler ◽  
Erika Lietzan

This chapter assesses the regulation of medical devices in the United States. The goal of the US regulatory framework governing medical devices is the same as the goal of the framework governing medicines. US law aims to ensure that medical devices are safe and effective for their intended uses; that they become available for patients promptly; and that manufacturers provide truthful, non-misleading, and complete information about the products. US medical device law is different from US medicines law in many ways, however, perhaps most notably because most marketed devices do not require pre-market approval. The chapter explores how the US Food and Drug Administration (FDA) seeks to accomplish its mission with respect to medical devicecough its implementation of its medical device authorities. It starts by explaining what constitutes a medical device and how the FDA classifies medical devices by risk level. The chapter then discusses how medical devices reach the market, the FDA's risk management tools, and the rules and incentives for innovation and competition. It concludes by exploring case studies of innovative medical technologies that challenge the traditional US regulatory scheme to consider the future of medical device regulation.


2021 ◽  
Vol 10 (1) ◽  
pp. 64-88
Author(s):  
James I. J. Green

A custom-made device (CMD) is a medical device intended for the sole use of a particular patient. In a dental setting, CMDs include prosthodontic devices, orthodontic appliances, bruxism splints, speech prostheses and devices for the treatment of obstructive sleep apnoea, trauma prevention and orthognathic surgery facilitation (arch bars and interocclusal wafers). Since 1993, the production and provision of CMDs have been subject to European Union (EU) Directive 93/42/EEC (Medical Device Directive, MDD) given effect in the UK by The Medical Devices Regulations 2002 (Statutory Instrument 2002/618), and its subsequent amendments. Regulation (EU) 2017/745 (Medical Device Regulation, EU MDR) replaces the MDD and the other EU Directive pertaining to Medical Devices, Council Directive 90/385/EEC (Active Implantable Medical Device Directive, AIMDD). The EU MDR was published on 5 April 2017, came into force on 25 May 2017 and, following a three-year transition period was due to be fully implemented and repeal the MDD on 26 May 2020, but was deferred until 26 May 2021 due to the coronavirus disease 2019 (COVID-19) pandemic. In the UK, in preparation for the country’s planned departure from the EU, the EU MDR, with necessary amendments, was transposed into UK law (Medical Devices (Amendment etc.) (EU Exit) Regulations 2019, UK MDR). The UK left the Union on 31 January 2020 and entered a transition period that ended on 31 December 2020, meaning that, from 1 January 2021, dental professionals in Great Britain who prescribe and manufacture CMDs are mandated to do so in accordance with the new legislation while Northern Ireland remains in line with the EU legislation and implementation date. This paper sets out the requirements that relate to the production and provision of CMDs in a UK dental setting.


Sign in / Sign up

Export Citation Format

Share Document