scholarly journals Process Design of the Antioxidant Shuidouchi and Its Effect on Preventing Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice via Antioxidant Activity

2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Jing Zhang ◽  
Qin Li ◽  
Yang Wei ◽  
Xingyao Long ◽  
Jianfei Mu ◽  
...  

Shuidouchi is a traditionally fermented soybean product in China. Shuidouchi production requires a variety of processes; however, the production process has not been standardized. It can be developed into high-quality products with enhanced health effects by improving the design of its fermentation process and increasing the content of its active ingredients. In this study, a single-factor experiment was conducted that established different process conditions to determine the fermentation conditions that achieve the highest content of active ingredients and the best in vitro antioxidant effect. The effect of Shuidouchi on the prevention of dextran sulfate sodium-induced colitis in mice was also observed. The obtained results indicated that the optimal process conditions involved soaking for 12 h, placement in a glass container, and fermentation at 35 °C for 48 h. Shuidouchi that was fermented under such conditions had the highest level of soybean isoflavones and exerted greater antioxidant effects than if fermented under other conditions. The Shuidouchi extract (soaking twice the quantity of water for 12 h, placing in a glass container, and fermenting at 35 °C for 48 h) obtained by using the optimal fermentation process can prevent the shortening of the colon and increase the weight-to-length ratio of the colon that is caused by colitis. Shuidouchi extraction not only effectively reduces the disease activity index and the levels of serum endothelin (ET), substance P (SP), and interleukin-10 (IL-10), it also increases the levels of somatostatin (SS), vasoactive intestinal peptide (VIP), and interleukin-2 (IL-2) of mice with colitis. In addition, Shuidouchi extraction increased the levels of glutathione (GSH) and superoxide dismutase (SOD) in colitis mice; in contrast, Shuidouchi decreased the levels of myeloperoxidase (MPO) and malondialdehyde (MDA) in the colon of mice with colitis. Further detection of mRNA in colon tissues showed that Shuidouchi extraction can upregulate the expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), c-Kit, and the stem cell factor (SCF). Furthermore, it can downregulate the expression of inducible nitric oxide synthase (iNOS), interleukin-8 (IL-8), and C-X-C chemokine receptor type 2 (CXCR2) in the colon of mice with colitis. Further experimental results showed that Shuidouchi could reduce the protein expression of interleukin 6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α) in colitic mice. Therefore, the improved processing of Shuidouchi inhibits colitis, which is directly related to the high content of soybean isoflavones.

2015 ◽  
Vol 95 (7) ◽  
pp. 728-748 ◽  
Author(s):  
Hiroki Saijo ◽  
Norifumi Tatsumi ◽  
Seiji Arihiro ◽  
Tomohiro Kato ◽  
Masataka Okabe ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1895
Author(s):  
Azra Memon ◽  
Bae Yong Kim ◽  
Se-eun Kim ◽  
Yuliya Pyao ◽  
Yeong-Geun Lee ◽  
...  

Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.


1997 ◽  
Vol 17 (4) ◽  
pp. 470-480 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Zvonimir S. Katusic

Cationic polypeptides are released by activated leukocytes and may play an important role in the regulation of vascular tone. Effects of cationic polypeptides on cerebral vascular tone have not been studied. The present experiments were designed to determine if synthetic cationic polypeptides, poly-L-arginine and poly-L-lysine, affect the function of cerebral arteries. Rings of canine basilar arteries with and without endothelium were suspended for isometric force recording. Poly-L-arginine (10–8–10–7 M) and poly-L-lysine (10–8–10–7 M) caused endothelium-dependent relaxations. A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (10–4 M), and a nitric oxide scavenger, oxyhemoglobin (3 × 10–6 M), inhibited relaxations in response to cationic polypeptides. Negatively charged molecules, heparin (1 U/ml) and dextran sulfate (10 mg/ml), also inhibited relaxations to poly-L-arginine or poly-L-lysine. Higher concentrations of poly-L-arginine (10–6–10–5 M) and poly-L-lysine (10–6–10–5 M) induced endothelium-independent contractions. A protein kinase C inhibitor, staurosporine (10–8 M), abolished these contractions. Heparin (10 U/ml) and dextran sulfate (100 mg/ml) inhibited the contractile effect of cationic polypeptides but did not affect contractions to phorbol 12,13-dibutyrate. Poly-L-arginine (10–6 M) and poly-L-lysine (10–6 M) abolished endothelium-dependent relaxations in response to bradykinin (10–10–10–6 M) or calcium ionophore A23187 (10–9–10–6 M). Heparin (50 U/ml) and dextran sulfate (200 mg/ml) restored endothelium-dependent relaxations to bradykinin (10–10–10–6 M) in arteries exposed to poly-L-arginine (10–6 M) or poly-L-lysine (10–6 M). These studies demonstrate that in the lower concentration range (10–8–10–7 M), poly-L-arginine and poly-L-lysine induce endothelium-dependent relaxations by production of nitric oxide via charge-dependent activation of endothelial nitric oxide synthase. In the higher concentration range (10–6–10–5 M), cationic polypeptides cause endothelium-independent contractions as well as impairment of endothelium-dependent relaxations in response to bradykinin and A23187. These contractions and inhibition of endothelium-dependent relaxations are also mediated by a charge-dependent mechanism and may involve activation of protein kinase C.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 674-683 ◽  
Author(s):  
Isabel Andújar ◽  
Alberto Martí-Rodrigo ◽  
Rosa Giner ◽  
José Ríos ◽  
María Recio

AbstractShikonin is the main active principle in the root of Lithospermum erythrorhizon, widely used in traditional Chinese medicine for its anti-inflammatory and wound healing properties. Recent research highlights shikoninʼs antitumor properties and capacity to prevent acute ulcerative colitis. The aim of the present study was to evaluate the ability of shikonin to prevent, in vivo, the early phases of colorectal cancer development, with special focus on its cytotoxic mechanism in vitro. We employed the azoxymethane/dextran sulfate sodium model of colitis in Balb/C mice. Body weight and drinking were monitored throughout the experiment, and length of colon and lesions of the colon were recorded on termination of the experiment in all of the experimental groups. Colons underwent histological evaluation and biochemical analyses [myeloperoxidase activity assay, measurement of interleukin-6, evaluation of proinflammatory enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and nuclear factor-κB activation by Western blot]. Caco-2 cells were used to evaluate, in vitro, the effect of shikonin on proliferation, cytotoxicity, cell cycle, and apoptosis. Our results reveal that shikonin significantly protected the intestinal tissue of our animals by preventing the shortening of the colorectum and ulcer formation in a dose-dependent manner. Shikonin attenuated the expression of cyclooxygenase-2 and inducible nitric oxide synthase, and myeloperoxidase activity, and inhibited the production of interleukin-6 and activation of nuclear factor-κB. It induced Bcl-2 and inhibited caspase 3. In conclusion, shikonin acts as a chemopreventive agent in the azoxymethane/dextran sulfate sodium model through inhibition of the proinflammatory milieu generated during the disease, an important risk factor in cancer development.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Sign in / Sign up

Export Citation Format

Share Document