scholarly journals A Comparative Study on the Effects of Passivation Methods on the Carrier Lifetime of RIE and MACE Silicon Micropillars

2019 ◽  
Vol 9 (9) ◽  
pp. 1804
Author(s):  
Amal Kabalan

Silicon micropillars have been suggested as one of the techniques for improving the efficiency of devices. Fabrication of micropillars has been done in several ways—Metal Assisted Chemical Etching (MACE) and Reactive Ion Etching (RIE) being the most popular techniques. These techniques include etching through the surface which results in surface damage that affects the carrier lifetime. This paper presents a study that compares the carrier lifetime of micropillars fabricated using RIE and MACE methods. It also looks at increasing carrier lifetime by surface treatment using three main approaches: surface passivation by depositing Al2O3, surface passivation by depositing SiO2/SiN, and surface passivation by etching using KOH and Hydrofluoric Nitric Acetic (HNA) solution. It was concluded that passivating with SiO2 and SiN results in the highest carrier lifetime on the MACE and RIE pillars.

2017 ◽  
Vol 15 ◽  
pp. 1-9
Author(s):  
Amal Kabalan

This paper presents a study on monitoring the native oxide growth on silicon micro-pillars. It also presents a comparison between the rates of oxide growth on pillars fabricated using the reactive ion etching (RIE) approach and the metal assisted chemical etching (MACE) approach. The native oxide growth is monitored using photoluminescence (PL) measurements. PL measurements showed that native silicon oxide grows at a higher rate on MACE pillars compared to RIE pillars. SEM images showed that the MACE pillars exhibit a porous outer layer while the RIE pillars show a dense outer layer. It is concluded that the porosity of the pillars enhances the native oxide growth.


2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3179
Author(s):  
Qi Wang ◽  
Kehong Zhou ◽  
Shuai Zhao ◽  
Wen Yang ◽  
Hongsheng Zhang ◽  
...  

Realizing the anisotropic deep trenching of GaN without surface damage is essential for the fabrication of GaN-based devices. However, traditional dry etching technologies introduce irreversible damage to GaN and degrade the performance of the device. In this paper, we demonstrate a damage-free, rapid metal-assisted chemical etching (MacEtch) method and perform an anisotropic, deep trenching of a GaN array. Regular GaN microarrays are fabricated based on the proposed method, in which CuSO4 and HF are adopted as etchants while ultraviolet light and Ni/Ag mask are applied to catalyze the etching process of GaN, reaching an etching rate of 100 nm/min. We comprehensively explore the etching mechanism by adopting three different patterns, comparing a Ni/Ag mask with a SiN mask, and adjusting the etchant proportion. Under the catalytic role of Ni/Ag, the GaN etching rate nearby the metal mask is much faster than that of other parts, which contributes to the formation of deep trenches. Furthermore, an optimized etchant is studied to restrain the disorder accumulation of excessive Cu particles and guarantee a continuous etching result. Notably, our work presents a novel low-cost MacEtch method to achieve GaN deep etching at room temperature, which may promote the evolution of GaN-based device fabrication.


1991 ◽  
Vol 240 ◽  
Author(s):  
G. Mclane ◽  
M. Meyyappan ◽  
M. W. Cole ◽  
H. S. Lee ◽  
R. Lareau ◽  
...  

ABSTRACTMagnetron reactive ion etching is an attractive alternative to reactive ion etching since it has the potential for producing minimal surface damage while still retaining the advantages of reactive ion etching. We report here the results of a study of GaAs magnetron ion etching using Freon-12 and silicon tetrachloride etch gases. Differences are found in etch profiles and surface region characteristics of GaAs samples etched by the two gases. The relevant mechanisms are discussed.


Sign in / Sign up

Export Citation Format

Share Document