scholarly journals Experimental Study and Optimization of the Organic Rankine Cycle with Pure NovecTM649 and Zeotropic Mixture NovecTM649/HFE7000 as Working Fluid

2019 ◽  
Vol 9 (9) ◽  
pp. 1865 ◽  
Author(s):  
Quentin Blondel ◽  
Nicolas Tauveron ◽  
Nadia Caney ◽  
Nicolas Voeltzel

The Organic Rankine Cycle (ORC) is widely used in industry to recover low-grade heat. Recently, some research on the ORC has focused on micro power production with new low global warming potential (GWP) replacement working fluids. However, few experimental tests have investigated the real performance level of this system in comparison with the ORC using classical fluids. This study concerns the experimental analysis and comparison of a compact (0.25 m3) Organic Rankine Cycle installation using as working fluids the NovecTM649 pure fluid and a zeotropic mixture composed of 80% NovecTM649 and 20% HFE7000 (mass composition) for low-grade waste heat conversion to produce low power. The purpose of this experimental test bench is to study replacement fluids and characterize them as possible replacement fluid candidates for an existing ORC system. The ORC performance with the pure fluid, which is the media specifically designed for this conversion system, shows good results as a replacement fluid in comparison with the ORC literature. The use of the mixture leads to a 10% increase in the global performance of the installation. Concerning the expansion component, an axial micro-turbine, its performance is only slightly affected by the use of the mixture. These results show that zeotropic mixtures can be used as an adjustment parameter for a given ORC installation and thus allow for the best use of the heat source available to produce electricity.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2548
Author(s):  
Ana Fernández-Guillamón ◽  
Ángel Molina-García ◽  
Francisco Vera-García ◽  
José A. Almendros-Ibáñez

The organic Rankine cycle (ORC) is widely accepted to produce electricity from low-grade thermal heat sources. In fact, it is a developed technology for waste-heat to electricity conversions. In this paper, an ORC made up of super-heater, turbine, regenerator, condenser, pump, economizer and evaporator is considered. An optimization model to obtain the maximum performance of such ORC, depending on the super-heater pressure, is proposed and assessed, in order to find possible new working fluids that are less pollutant with similar behavior to those traditionally used. The different super-heater pressures under analysis lie in between the condenser pressure and 80% of the critical pressure of each working fluid, taking 100 values uniformly distributed. The system and optimization algorithm have been simulated in Matlab with the CoolProp library. Results show that the twelve working fluids can be categorized into four main groups, depending on the saturation pressure at ambient conditions (condenser pressure), observing that the fluids belonging to Group 1, which corresponds with the lower condensing pressure (around 100 kPa), provide the highest thermal efficiency, with values around η=23−25%. Moreover, it is also seen that R123 can be a good candidate to substitute R141B and R11; R114 can replace R236EA and R245FA; and both R1234ZE and R1234YF have similar behavior to R134A.


Author(s):  
C. Somayaji ◽  
P. J. Mago ◽  
L. M. Chamra

This paper presents a second law analysis and optimization for the use of Organic Rankine Cycle “ORC” to convert waste energy to power from low grade heat sources. The working fluids used in this study are organic substances which have a low boiling point and a low latent heat for using low grade waste heat sources. The organic working fluids under investigation are R134a and R113 and their results are compared with those of ammonia and water under similar operating conditions. A combined first and second law analysis is performed by varying some system operating parameters at various reference temperatures. Some of the results show that the efficiency of ORC is typically below 20% depending on the temperatures and matched working fluid. In addition, it has been found that organic working fluids are more suited for heat recovery than water for low temperature applications, which justifies the use of organic working fluids at the lower waste source temperatures.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1022
Author(s):  
Xinxin Zhang ◽  
Yin Zhang ◽  
Zhenlei Li ◽  
Jingfu Wang ◽  
Yuting Wu ◽  
...  

The organic Rankine cycle (ORC) is a popular and promising technology that has been widely studied and adopted in renewable and sustainable energy utilization and low-grade waste heat recovery. The use of zeotropic mixtures in ORC has been attracting more and more attention because of the possibility to match the temperature profile of the heat source by non-isothermal phase change, which reduces the irreversibility in the evaporator and the condenser. The selection of working fluid and expander is strongly interconnected. As a novel expander, a single screw expander was selected and used in this paper for efficient utilization of the wet zeotropic mixtures listed in REFPROP 9.1 in a low-temperature subcritical ORC system. Five indicators, namely net work, thermal efficiency, heat exchange load of condenser, temperature glide in evaporator, and temperature glide in condenser, were used to analyze the performance of an ORC system with wet and isentropic zeotropic mixtures as working fluids. The calculation and analysis results indicate that R441A with an expander outlet temperature of 320 K may be the suitable zeotropic mixture used for both open and close type heat source. R436B may be selected with an expander outlet temperature of 315 K. R432A may be selected with an expander outlet temperature from 295 K to 310 K.


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 480 ◽  
Author(s):  
Gábor Györke ◽  
Axel Groniewsky ◽  
Attila Imre

One of the most crucial challenges of sustainable development is the use of low-temperature heat sources (60–200 °C), such as thermal solar, geothermal, biomass, or waste heat, for electricity production. Since conventional water-based thermodynamic cycles are not suitable in this temperature range or at least operate with very low efficiency, other working fluids need to be applied. Organic Rankine Cycle (ORC) uses organic working fluids, which results in higher thermal efficiency for low-temperature heat sources. Traditionally, new working fluids are found using a trial-and-error procedure through experience among chemically similar materials. This approach, however, carries a high risk of excluding the ideal working fluid. Therefore, a new method and a simple rule of thumb—based on a correlation related to molar isochoric specific heat capacity of saturated vapor states—were developed. With the application of this thumb rule, novel isentropic and dry working fluids can be found applicable for given low-temperature heat sources. Additionally, the importance of molar quantities—usually ignored by energy engineers—was demonstrated.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1808-1811 ◽  
Author(s):  
Han Lv ◽  
Wei Ting Jiang ◽  
Qun Zhi Zhu

Organic Rankine cycle is an effective way to recover low-grade heat energy. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa,R600a,R227ea organic working fluid, using Aspen Plus software conducted simulation by changing the evaporation temperature. Results from these analyses show that decreasing the evaporation temperature, increasing thermal and exergy efficiencies, evaporating pressure, at the same time reduce steam consumption rate.


Sign in / Sign up

Export Citation Format

Share Document