scholarly journals Graphene-Based Cylindrical Pillar Gratings for Polarization-Insensitive Optical Absorbers

2019 ◽  
Vol 9 (12) ◽  
pp. 2528 ◽  
Author(s):  
Muhammad Fayyaz Kashif ◽  
Giuseppe Valerio Bianco ◽  
Tiziana Stomeo ◽  
Maria Antonietta Vincenti ◽  
Domenico de Ceglia ◽  
...  

In this study, we present a two-dimensional dielectric grating which allows achieving high absorption in a monolayer graphene at visible and near-infrared frequencies. Dielectric gratings create guided-mode resonances that are exploited to effectively couple light with the graphene layer. The proposed structure was numerically analyzed through a rigorous coupled-wave analysis method. Effects of geometrical parameters and response to the oblique incidence of the plane wave were studied. Numerical results reveal that light absorption in the proposed structure is almost insensitive to the angle of the impinging source over a considerable wide angular range of 20°. This may lead to the development of easy to fabricate and experimentally viable graphene-based absorbers in the future.

2011 ◽  
Vol 60 (11) ◽  
pp. 114214
Author(s):  
Kong Wei-Jin ◽  
Wang Shu-Hao ◽  
Wei Shi-Jie ◽  
Yun Mao-Jin ◽  
Zhang Wen-Fei ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 4278-4290
Author(s):  
Faouzi Ghmari ◽  
Ilhem Mezni

The purpose of this paper is to study the radiative properties of two model structures. The first model (A-1) is a rectangular grating of silicon (Si). The second one (A-2) is obtained from A-1 by filling their trenches by SiO2. These patterned wafers are characterized by three geometrical parameters, the period d, the filling factorand the thickness h. To derive and compute the radiative properties we use a rigorous coupled wave analysis (RCWA) method. Our attention is focused on the absorptance of these structures when they are illuminated by a monochromatic plane wave. We investigate the effect of the filling factor on the absorptance versus the direction of the incident wave. At specific angles of incidence the effect of the period is also studied. Besides, the influence of the thickness h on the absorptance is included throughout this work. At the wavelength = 632,8nm, we especially show that we can identify several perfect absorber model structures characterized by specific parameters and by accurate angle of incidence. We show that this will be done in both transverse electric (TE) and transverse magnetic (TM) polarization cases.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3187
Author(s):  
Xuenan Zhao ◽  
Honggang Gu ◽  
Linya Chen ◽  
Shiyuan Liu

Embedding nanostructures in organic solar cells (OSCs) is a well-known method to improve the absorption efficiency of the device by introducing the plasma resonance and scattering effects without increasing the active layer thickness. The introduction of nanostructures imposes greater demands on the optical analysis method for OSCs. In this paper, the generalized rigorous coupled-wave analysis (GRCWA) is presented to analyze and optimize the performance of coherent-incoherent hybrid organic solar cells (OSCs) with nanostructures. Considering the multiple reflections of light scattered within the glass substrate by the device, the correction vector g is derived, then the modified expressions for the field and absorption distribution in OSCs are provided. The proposed method is validated by comparing the simulated results of various structures with results obtained by the generalized transfer matrix method (GTMM) and the “equispaced thickness method” (ETM). The results demonstrate that the proposed method can reduce the number of simulations by at least half compared to the ETM while maintaining accuracy. With the proposed method, we discussed the device performance depending on the geometrical parameters of nanostructures, and the optimization and analysis are accomplished for single and tandem OSCs. After optimization based on the proposed method, the performance of OSCs are significantly improved, which further demonstrates the practicality of the method.


2008 ◽  
Vol 57 (8) ◽  
pp. 4904
Author(s):  
Kong Wei-Jin ◽  
Yun Mao-Jin ◽  
Sun Xin ◽  
Liu Jun-Hai ◽  
Fan Zheng-Xiu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


2011 ◽  
Vol 211-212 ◽  
pp. 465-468
Author(s):  
De Wei Chen

Since the development almost a decade ago of the first biosensor based on surface plasmon resonance (SPR), the use of this technique has increased steadily. In this study, we theoretically investigated the sensing character of SPR sensor with reflection type metallic with Rigorous Coupled Wave Analysis (RCWA) method, and the mechanism is analyzed by the field distribution. It is found that the sensitivity of negative diffraction order, which goes higher quickly as the resonant angle increases, is much greater than that of positive diffraction order.


Sign in / Sign up

Export Citation Format

Share Document