scholarly journals Optical Model and Optimization for Coherent-Incoherent Hybrid Organic Solar Cells with Nanostructures

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3187
Author(s):  
Xuenan Zhao ◽  
Honggang Gu ◽  
Linya Chen ◽  
Shiyuan Liu

Embedding nanostructures in organic solar cells (OSCs) is a well-known method to improve the absorption efficiency of the device by introducing the plasma resonance and scattering effects without increasing the active layer thickness. The introduction of nanostructures imposes greater demands on the optical analysis method for OSCs. In this paper, the generalized rigorous coupled-wave analysis (GRCWA) is presented to analyze and optimize the performance of coherent-incoherent hybrid organic solar cells (OSCs) with nanostructures. Considering the multiple reflections of light scattered within the glass substrate by the device, the correction vector g is derived, then the modified expressions for the field and absorption distribution in OSCs are provided. The proposed method is validated by comparing the simulated results of various structures with results obtained by the generalized transfer matrix method (GTMM) and the “equispaced thickness method” (ETM). The results demonstrate that the proposed method can reduce the number of simulations by at least half compared to the ETM while maintaining accuracy. With the proposed method, we discussed the device performance depending on the geometrical parameters of nanostructures, and the optimization and analysis are accomplished for single and tandem OSCs. After optimization based on the proposed method, the performance of OSCs are significantly improved, which further demonstrates the practicality of the method.

2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


2013 ◽  
Vol 14 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Gon Namkoong ◽  
Jaemin Kong ◽  
Matthew Samson ◽  
In-Wook Hwang ◽  
Kwanghee Lee

2012 ◽  
Vol 512-515 ◽  
pp. 1598-1603
Author(s):  
Yong Chang Zhang ◽  
Xing Jian Jiao ◽  
Chen Zhou ◽  
He Ping Shen ◽  
Feng Hao ◽  
...  

Single-crystal TiO2 nanorod film was synthesized directly on FTO substrates with various lengths by changing the hydrothermal growth parameters including growth time and growth temperature. The obtained nanorod arrays were incorporated in organic solar cells as buffer layer instead of PEDOT: PSS. Results showed that devices assembled with TiO2 nanorods film of 200 nm in length exhibited a lower open-circuit voltage but a significantly higher short-circuit current density compared to those of normal FTO/PEDOT: PSS/P3HT: PCBM/Al structure with a comparable active layer thickness. Overall the power conversion efficiency was boosted by two-fold. Electrochemical impedance spectroscopy (EIS) analyses revealed that the improvement in the photovoltaic performance was induced by the inhibited recombination and consequently enhanced electron lifetime.


2019 ◽  
Vol 9 (12) ◽  
pp. 2528 ◽  
Author(s):  
Muhammad Fayyaz Kashif ◽  
Giuseppe Valerio Bianco ◽  
Tiziana Stomeo ◽  
Maria Antonietta Vincenti ◽  
Domenico de Ceglia ◽  
...  

In this study, we present a two-dimensional dielectric grating which allows achieving high absorption in a monolayer graphene at visible and near-infrared frequencies. Dielectric gratings create guided-mode resonances that are exploited to effectively couple light with the graphene layer. The proposed structure was numerically analyzed through a rigorous coupled-wave analysis method. Effects of geometrical parameters and response to the oblique incidence of the plane wave were studied. Numerical results reveal that light absorption in the proposed structure is almost insensitive to the angle of the impinging source over a considerable wide angular range of 20°. This may lead to the development of easy to fabricate and experimentally viable graphene-based absorbers in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Marcelino L. C. da Silva ◽  
Victor Dmitriev ◽  
Karlo Q. da Costa

It is known that the periodic use of silver nanoantennas in organic solar cells increases the efficiency of light absorption. In this study, we performed a geometric parametric analysis of nanoantennas using the finite element method. Based on the study of the convex truncated cone nanoantenna, we have found that a nanoantenna arrangement formed by the convex truncated cone nanoantenna along with a pyramidal nanoantenna provides a better solution for different angles of light incidence compared to a single nanoantenna. We obtained a mean increase in the absorption efficiency of this organic solar cell, both for the TM and TE polarizations, compared to the use of the conventional nanoantenna in the wavelength range of 300–800 nm.


2013 ◽  
Vol 1 (39) ◽  
pp. 12345 ◽  
Author(s):  
Antonio Guerrero ◽  
Núria F. Montcada ◽  
Jon Ajuria ◽  
Ikerne Etxebarria ◽  
Roberto Pacios ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 4278-4290
Author(s):  
Faouzi Ghmari ◽  
Ilhem Mezni

The purpose of this paper is to study the radiative properties of two model structures. The first model (A-1) is a rectangular grating of silicon (Si). The second one (A-2) is obtained from A-1 by filling their trenches by SiO2. These patterned wafers are characterized by three geometrical parameters, the period d, the filling factorand the thickness h. To derive and compute the radiative properties we use a rigorous coupled wave analysis (RCWA) method. Our attention is focused on the absorptance of these structures when they are illuminated by a monochromatic plane wave. We investigate the effect of the filling factor on the absorptance versus the direction of the incident wave. At specific angles of incidence the effect of the period is also studied. Besides, the influence of the thickness h on the absorptance is included throughout this work. At the wavelength = 632,8nm, we especially show that we can identify several perfect absorber model structures characterized by specific parameters and by accurate angle of incidence. We show that this will be done in both transverse electric (TE) and transverse magnetic (TM) polarization cases.


2017 ◽  
Vol 231 (6) ◽  
Author(s):  
Muhammad Adnan ◽  
Javed Iqbal ◽  
Shamsa BiBi ◽  
Riaz Hussain ◽  
Muhammad Nadeem Akhtar ◽  
...  

AbstractGeometrical parameters, electronic structures and photophysical properties of three new triphenylamine (TPA) and diphenylamine (DPA) based electron donor materials


Sign in / Sign up

Export Citation Format

Share Document